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Abstract

Until recently, much of the microbial world was hidden from view. A global research effort has changed this,
unveiling and quantifying microbial diversity across an enormous range of critically-important contexts, from
the human microbiome, to plant-soil interactions, to marine life. Yet what has remained largely hidden is the
interplay of ecological and evolutionary processes that led to the diversity we observe in the present day. In
this thesis we introduce two theoretical frameworks, one at the macroevolutionary scale and the other at
the mesoscopic scale where intricacies of abundances and environmental specificities begin to matter. At
the macroscopic scale we identify an imbalance between gradual, ongoing diversification and rapid bursts
across a vast range of microbial habitats and find universal quantitative similarities in the tempo and mode
of diversification, independent of habitat type. This signature persists even when the quality and length of
our sequence data and consequent resolution of the phylogeny is relatively low compared to the timescale
of the processes. At the mesoscopic scale we discover a rich hierarchy of organization and niche signals in
the pattern of abundances in the microbial diversity of the global ocean and in the process identify three
putatively novel microbiomes.
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Chapter 1

Introduction

Documenting universal patterns in ecological systems and evolution has a very long history stretching all the
way back to the very early days of their respective fields. So has the drive to try and explain their origins
using both simple and complicated statistical and dynamical models. Just to give a very short list of examples,
we can think here of Preston’s canonical log-normal relative species abundances distribution[1]–[3], large-scale
species area curve[4]—considered one of the few quasi-fundamental law of ecology—Hubbell’s unified neutral
model of diversity in metacommunities[5], MacArthur and Wilson’s theory of island biogeography[6], [7]
which was two years later supported by the ingenious experiment of Simberloff and Wilson on mangrove
island[8], the long-tailed nature of rank-abundance distributions[9], [10], allometric scaling of organismal
organization[11]–[14], and patterns of interactions and the stability of complex communities[15], [16].

Various efforts are now striving to catalogue the most diverse systems on Earth; microbiomes. Current
efforts in this direction challenge the imagination in scale and complexity. We are referring here to projects
like the Human Microbiome Project[17], the International Census of Marine Microbes[18], the TARA Oceans
expedition[19], [20], and the Earth Microbiome Project[21]. The tremendous wealth of information these
efforts have collected over the years begs for new models and concepts to explain them. How fast and in
what way do microbes evolve? How do they organize themselves across macro- and microenvironments? Is
there a simple way to capture the incredible complexity they harbor? How do we bridge the explanatory gap
between the microscopic, the mesoscopic, and the macroscopic? In short, are there simplified or complex laws
and universalities underlying the patterns we see in microbial communities? Are we succumbing in this search
to ‘physics envy’[22] or can we hope to be rescued by the unreasonable effectiveness of mathematics[23]?

What we need here, we believe, is a conceptual microscope—or is it a telescope?—that allows us to
smoothly change the focus of our explanations inwards and outwards, that imbricates our theories and models
one scale below and one scale above. Given the features and processes we hoped to capture in our models,
there are few things more satisfying than to find out it can explain other features at larger scales, namely
that it explain the self-organization and the ‘emergence’ of qualitatively distinct phenomena in the limit of a
large number of interacting constituents[24]. Emergent phenomena and self-organization have been widely
recognized and documented in the field of ecology and evolution of complex systems[25], but the current
theoretical picture remains unsatisfying given its disparate and case-by-case nature. What is missing, indeed,
is the microscope, a way to transform concepts, models, or theories into others in a way that connects them
across scales. One might be tempted to borrow directly from the realm of theoretical physics where one
such tool exists, the ‘renormalization group’[26], [27], yet the success of the renormalization group in particle
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and statistical physics in explaining the emergence of macroscopic phases of matter in terms of dissimilar
microscopic laws is only made possible because of the high degree of symmetry enjoyed by the systems and
models at play. Unfortunately we do not have the luxury of such symmetries in the biological and ecological
realms and thus we are still today left struggling with ‘the problem of pattern and scale’ in ecology and
evolution[28]. Biology is heterogeneous, complicated, tangled, and its systems are out-of-equilibrium and
complex.

In this thesis I do not pretend to even marginally approach the formulation of such a conceptual microscope,
but I will attempt to reaffirm its importance and the question it raises by highlighting what I believe are
interesting patterns at various scales of the diversification and organization of microbial systems. I will
first try to explain at the phenomenological level how these patterns can emerge from simple processes
containing but a few justified elements, and then I will teach the machine to automatically learn and dissect
the complexity left behind by those processes in the organization of microbiomes. I will, in a way, teach it to
read the leaves of microbial communities.

In Chapter 2 we situate ourselves at the macroevolutionary scale to study the tempo and mode of evolution
in the microbial tree of life. In Section 2.2 we construct two new processes, called the ‘innovation’ and
‘heterogeneous innovation’ processes, to complement the more traditional birth-death processes, also called
speciation-extinction processes, by introducing a second time-scale, the fast time-scale, at which diversification
can occur. We combine these processes together into a novel model called the Birth-Death-Heterogeneous-
Innovation model (BDH). Then in Section 2.3 we introduce a novel exact goodness-of-fit test to determine
whether our model is sufficient, rather than simply better, at explaining the patterns of diversification
observed in empirical phylogenies. In preparation to the application of our model to microbial diversification,
in Section 2.4 we transform the enormous phylogenetic tree of the Earth Microbiome Project (EMP) into a
timetree by means of phylogenetic placement using SEPP and constrained phylogenetic optimization using
family-level calibration points given by the Timetree project. In Section 2.6 we apply our methodology the the
calibrated EMP timetree and reveal two universal features present across microbiomes. Finally in Section 2.7
we discuss limits to our models and implications of our results to the understanding of microbial niche space
and give a tentative answer to the question of the tempo and mode of microbial evolution.

Zooming in to the mesoscopic scale, in Chapter 3 we set out to find signals of the aforementioned microbial
niches in the ocean microbiome. In Section 3.2 we first explain how to use the community phylogenetic tree
as an organizational tool to helps us reframe traditional microbial ecology data into biologically-informed
‘phylogenetic abundance tables’. Then we introduce two nonparametric probabilistic generative models
inspired by computational linguistics, the flat sample-wise Dirichlet process and the path-limited nested
hierarchical Dirichlet process (pl-nhDP), which we use to discover and describe patterns of abundance in
the phylogenetic abundance table. In Section 3.3 we describe how we can discover coarse-grained ecological
microbial units as a certain kind of minimal optimal set of clades that captures the full topology of the
structure inferred by the pl-nHDP model. In Section 3.4 we apply our unsupervised learning method to two
microbial datasets, namely the zebrafish gut microbiome dataset and the TARA Ocean expedition dataset,
where we find abundant ‘signals of niches’ across both known and unknown environmental features. Finally
in Section 3.5 we discuss the useful of our model and how our results open up the question of what we mean
by niches in an unsupervised learning context.
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Chapter 2

Burstiness in the Earth Microbiome

2.1 Introduction

Large scale microbiome sampling and sequencing, for example the efforts behind the Earth Microbiome project
(EMP)[21], The Human Microbiome project[29], and the TARA Oceans expedition[19], have documented
global microbial diversity with unprecedented scope and resolution. The tools currently applied to these
data, in particular the Metagenomic RAST server[30], the Mothur software[31]–[34], open-reference OTU
picking[35], the QIIME software[36], and the Deblur method[37], allow us to quantify the amount and type
of diversity found in microbial communities and yet we know remarkably little about the the underlying
community dynamics and tempo of diversification that generated the biodiversity we observe. This gap in
our knowledge calls out for robust new ecological and evolutionary theories that will allow us to connect
mechanisms to observed patterns through the processes of dispersal, diversification, environmental selection,
and ecological drift. [38], [39].

To address this challenge, we introduce a new methodology to bridge the gap between biological process and
observed microbial biodiversity. Our approach leverages the inference of dynamical processes from evolutionary
trees, previously applied to understand large-scale evolutionary structures[40]–[46] and the phylodynamics
of viral populations on shorter timescales[47]–[50]. We also incorporate the recent identification of bursts
of diversification in microbial phylogenies which emerged following the multiscale analysis of phylogenetic
diversity[51]. The result is a model which includes traditional, slow processes for gradual speciation (one
lineage goes to two lineages, which we call the ‘birth’ of a lineage) and extinctions (one lineage disappears,
which we call ‘death’), together with a third set of mechanisms incorporating the process of ecological
‘innovation’ potentially followed by radiative diversification.

We apply our framework to the EMP dataset, spanning 27751 samples from 96 studies of 96 habitats
and 40 biomes[21], finding a previously unidentified balance of fast and slow evolutionary processes in these
data, and a tendency towards universal behavior in the quantitative description of bursty diversification. We
cannot directly quantify the traits and their changes through time that may have led to a given combination
of rapid and gradual processes, but our results are strongly suggestive of a centre-ground in the long-standing
debate over phyletic gradualism versus punctuated equilibrium[52].

Our knowledge of the diversification of microbial organisms is characterized by the branching of their evo-
lutionary lineages reconstructed using genetic sequence data sampled in the present day[53]–[57]. Phylogenetic
trees represent evolutionary relationships in the form of a tree with branch lengths in units of the average
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Beginning of burst from

elevated speciation rate σ

End of burst

τ≪T

Limited resolution

Figure 2.1: Uncertainty generates polytomies. Periods of fast diversification leave little to no signal in
sequences with a limited number of base pairs, meaning that we cannot always distinguish between different
possible orderings of diversification events using short sequences. These ambiguities often rightfully show up
in bootstrap consensus trees or during calibration. Allowing for the presence of a process whereby one
lineage effectively instantaneously diversifies into many over a very short timescale τ alleviates this issue and
allows the inference of effective parameters associated with faster processes. Limited resolution in effect
naturally lead to the coarse-graining of the class of all short periods of diversification events from one to n
lineages by transforming them into a polytomy of some size k.

number of mutations between two points. To make the jump from molecular evolution of nucleotides to
theoretical models of diversification through time we need to calibrate such phylogenetic trees and transform
them into ultrametric trees, meaning where the path from every leaf to the root is equal, with branches in
units of time, called chronograms[58] or more recently timetrees[59], [60]. This process assumes a molecular
clock where evolutionary changes are taken to be mostly constant and is often calibrated e.g. using data
from the fossil record or known, dated events in the evolution of life. Several software packages are available
to generate them[61]–[65]. We can think of timetrees as the input data for macroevolutionary rate inference.
Traditional macroevolutionary rate inference approaches allow for gradual speciation and extinction and
various modifications have been introduced throughout the years on the way the rates of those processes
are parametrized or vary in time[40]–[47]. More recently, the estimation of microevolutionary dynamical
epidemiological SIR models of viral diversification using phylogenetic trees has been explored under what is
an exciting new field called ‘phylodynamics’[49], [50], [66].

Breaking away from seeking models and methods for the estimation of micro- and macroevolutionary
rates of ever increasing complexity, we opt instead to create a more modest phenomenological model of
diversification with a simple minimal addition; a third process called ‘innovation’. In our innovation process,
a lineage experiences a much faster rate of diversification, σ, for a very short time, τ . We can think of this
event as representing the outcome of a key innovation that opens the opportunity for a rapid radiation, which
is eventually saturated [67], [68]. The problem with inferring the parameters of the innovation process is that
when σ is large, there will be parts of any reconstructed timetree where we may not have enough information
in our sequence data to distinguish the true ordering of those branching events. Figure 2.1 shows a cartoon of
how under those circumstances, instead of one lineage branching into two, one lineage will sometimes appear
to ‘instantaneously‘ branch into many. Even if we did have longer sequences, there is always a speed limit on
what kinds of process we can accurately infer from these data.

Surprisingly, there is a way to bypass this speed limit by leveraging the distribution of sizes of these
apparent bursts of branching. Even though we cannot resolve phylogenies down to the shortest timescales, the
distribution of burst sizes still carries information about the parameters of the innovation process. The catch
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is that we cannot distinguish between different values of σ and τ independently and instead the distribution
of burst sizes only depends on the product of diversification rate and diversification time, στ , as derived
below. By looking at the evolutionary history through a blurred lens, we therefore collapse a multi-parameter
family of models into a single parameter—reminiscent of the loss of information under coarse-graining in
physics—so that at a sufficiently coarse resolution, many different fine-scale models map onto the same
effective theory[26], [27], [69].

2.2 Methods

Coarse-Grained Timetrees

Consider a timetree T , i.e. a rooted ultrametric phylogeny with branches in units of time. We will from now
on call it a tree for short. We will denote its depth by T , namely the distance from any extant lineage in the
present day to the root. We do not restrict ourselves to bifurcating trees and will allow internal nodes to
have arbitrary outdegrees (number of immediate descendants) greater than or equal to 2. In other words we
allow trees with polytomies. For computational purposes and without loss of generality, we rescale all branch
lengths by T , which amounts to a change of units that normalizes the total tree depth to 1.

Our coarse-graining method is shown in Figure 2.2. In Figure 2.2 A we introduce K slices over the tree at
equal distance ∆ = T/K from each other. Each slice cuts the branches it intersects and effectively breaks
the tree into small subtrees as shown in Figure 2.2 B. We will sometimes call those subtree ‘observed past
subtrees’ when we want to highlight the fact that each lineage of a subtree from deeper in the tree must have
all its descendant lineages with themselves observable descendants in the present day. Figure 2.2 C shows
that for each subtree falling off of this slicing operation we associate a tuple (t, s, k), t > s, k ≥ 1, where t
is the time in the past of the single root lineage of the subtree, s the time in the past of the crown of the
subtree, and k the number of leaves, or size, of the subtree. Note that t and s increases towards the past. For
the slice closest to the present its subtrees are such that s = 0. Notice that for a given (t, s, k) there is a
class of equivalence of subtrees of equal size, namely the set of all trees with k leaves. The probabilities of
observing a subtree of size k, which we will derive in section 2.2.4, accounts for the marginalization over all
those equivalent subtrees. This is a feature of the coarse-graining approach. We indicate this coarse-graining
operation by RK and the coarse-grained tree, following the slicing into K slices, by TK = RK [T ]. By an
abuse of notion we identify the coarse-grained tree with the set of its tuples

TK = {(ti, si, ki)}i∈ITK , i = 1, . . . S (2.1)

where ITK is an index set over TK , S is the number of subtrees in TK and thus of indexes in ITK . Given a
uniform slicing we will alternatively use the notation which associate the index σ to a slice with boundaries
(t, s) = (σ∆, (σ − 1)∆) such that the set of tuples

TK = {(tσi, sσi, kσi)} i∈Iσ
σ=1...K

. (2.2)

where in particular tKi = T and s1i = 0. The usefulness of this notation resides in highlighting the redundancy

sσ,i = tσ−1,i. (2.3)
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Figure 2.2: The coarse-graining process consists of three steps. A Introduce K slices of width ∆ = T/K.
There is no loss of generality in using slices with equal width. B Slice the tree into observed past subtrees by
cutting the tree at the intersection between branches and slice boundaries. C Associate a tuple (t, s, k) to
each subtree where t is the time of the origin of the subtree, s < t the time where descendant branches were
cut by the neighboring slice closer to the present day, and k the number of leaves of the subtree.
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2.2.1 Formalism

The equivalence between holomorphic/meromorphic generating functions and operational/Fock-space methods
applied to classical objects has a long history in the field of nonequilibrium statistical mechanics of many-body
systems, beginning with seminal papers from various authors[70]–[72]. See also Maslov’s operational method
[73] for a parallel development in the field of linear differential operators. Yet it is only relatively recently
that those methods have been recognized as potent tools applicable to mathematical biology and ecology,
(see e.g. [74], [75]). We will use this powerful mathematical framework in the following.

Generating Functions, Probabilities, and Observables

Let pn(t) denote the probability at time t of observing a system in state n. For our purposes, n will represent
the number of lineages and thus take value in the non-negative integers. To any such pn(t) we associate the
probability generating function (PGF)

ψt(z) =
∞∑
n=0

pn(t)zn. (2.4)

The normalization of pn(t) translates to

ψt(1) =
∑
n≥0

pn(t) = 1,

and we can recover individual state probabilities from the Taylor coefficients of the PGF around z = 0,

pn(t) = 1
n!

∂n

∂zn
ψt(z)

∣∣∣∣
z=0

:= 1
n!ψ

(n)
t (0). (2.5)

Coefficients can also be recovered using Cauchy’s integral formula

pn(t) = 1
2πi

∮
|z|=r

ψt(z)
zn+1 dz = 1

2πrn

∫ 2π

0
e−inθψt(reiθ)dθ, (2.6)

with 0 < r < R the radius of a circular contour around z = 0 and R the radius of convergence of ψt(z) about
z = 0.

A wide class of Markovian master equations with transition matrix W specifying the time evolution of
pn(t)

dpn(t)
dt

=
∑
m

Wnmpm(t)−
∑
l

Wlnpn(t), (2.7)

translate at the level of the PGF (using shorthand for partial derivatives ∂x := ∂
∂x ) to

∂tψt(z) = L[z, ∂z]ψt(z), (2.8)

with L[z, ∂z] the stochastic generator of forward time evolution. Details on how to obtain explicitly the
mapping from W to L can be found for example in [71], [72]. We will give explicit expressions for L for all
stochastic processes we are interested in in the following sections and will generally omit discussing W .

Given an initial distribution ψ0(z), solutions to Equation 2.8 are formally given by

ψt(z) = etL[z,∂z]ψ0(z). (2.9)
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This formalism, called holomorphic formalism, admits three important similarity transformations[76]: two
shifts,

ex∂zψ(z, ∂z)e−x∂z = ψ(z + x, ∂z) (2.10)

and
exzψ(z, ∂z)e−xz = ψ(z, ∂z − x), (2.11)

and a scaling transformation,
exz∂zψ(z, ∂z)e−xz∂z = ψ(zex, e−x∂z). (2.12)

Apart from probabilities given by Equation 2.5, and omitting all matters of convergence, with the knowledge
of the PGF ψ(z) for a random variable N we can obtain its factorial moments by taking repeated derivatives
about z = 1, to wit

〈N(N − 1)...(N − k + 1)〉 = ∂k

∂zk
ψ(z)

∣∣∣∣
z=1

.

Moments µ′k can be obtained similarly following the change of variable z → et, namely

µ′k = 〈Nk〉 = ∂k

∂tk
ψ(et)

∣∣∣∣
t=0

,

and thus central moments µk, with µ := µ′1 the mean,

µk = 〈(N − µ)k〉 = ∂k

∂tk
[
e−µtψ(et)

]∣∣∣∣
t=0

.

Finally we can extract cumulants

κk = ∂k

∂tk
lnψ(et)

∣∣∣∣
t=0

from the logarithm of the moment generating function, also called the cumulant generating function

2.2.2 Processes

Equations 2.10-2.12 together with the chain rule are sometimes sufficient for solving simple stochastic processes
like the death (pure extinction) process, the Yule (pure birth) process, and the birth-death (speciation-
extinction) process. For more complicated processes like the innovation and heterogeneous innovation
processes introduced below we will need to resort to solving Equation 2.8 numerically. In later sections we will
further show how to combine repeated numerical solving with and exponentially-converging approximation of
Equation 2.6 into a numerically exact solver for the non-equilibrium probability distribution pn(t).

The Death (Extinction) Process

The death/extinction process with per capita death/per lineage extinction rate d consists in the instantaneous
transition

A
d−→ ∅,

where A represents any given lineage extant at time t. Each individual lineage goes to extinction with an
exponentially distributed time to extinction ∼ e−dt. For a phylogeny with n extant lineages under the effect of
this process, the waiting time between two extinction events anywhere in the phylogeny is thus exponentially
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distributed with total rate dn, after each of which it changes state into a phylogeny with n− 1 extant lineages.
With no other process to replenish lineages the state n = 0 is absorbing. In terms of combinatorial classes[77],

zn
dn−→ zn−1,

and therefore the generator
Ldeath = d(1− z)∂z.

Notice how the partial derivative operator in the generator has the effect of enumerating the number of ways
of pointing and removing any one of the n lineages in a state zn of n lineages, i.e. it transforms zn → nzn−1,
and thus how the full stochastic generator transforms a state zn into dn(zn−1 − zn). The formal solution of
its master equation

ψt(z) = edt(1−z)∂zψ0(t),

where we can read off the characteristic timescale dt. Using Eqs. 2.10 and 2.12 to commute shift operators
around we can write

ψt(z) = e−∂ze−dtz∂ze∂zψ0(z),

= e−∂ze−dtz∂zψ0(z + 1),

= e−∂zψ0(ze−dt + 1),

= ψ0(1− e−dt + e−dtz).

(2.13)

For a initial state with a single lineage (ψ0(z) = z) at some time 0 in the past, Equation 2.13 stipulates that
at time t in the present the probability that the lineage remains extant (the survival probability) is e−dt

and the probability that it goes extinct somewhere between time 0 and time t (the extinction probability)
is 1− e−dt. Notice that the extinction probability converges asymptotically to 1, once again indicating the
presence of the absorbing state.

The Birth (Yule/Speciation) Process

The Yule process is the direct counterpart of the pure death process and thus, given a per capita birth/per
lineage speciation rate b, consists in the instantaneous transition

A
b−→ 2A.

In the absence of any other processes, each lineage undergoes binary speciation events (one lineage goes to two
lineages) with inter-speciation waiting time exponentially distributed ∼ e−bt. In a phylogeny with n extant
lineages the waiting time between speciation events happening anywhere in the phylogeny are exponentially
distributed with total rate bn. After each such event the phylogeny transition into a state with n+ 1 extant
lineages. Once again, in terms of combinatorial classes

zn
bn−→ zn+1,

therefore the generator is given by
Lbirth = b(z − 1)z∂z,
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and the formal solution of its master equation

ψt(z) = ebt(1−z)∂zψ0(t).

Before proceeding with similarity transformations we introduce the change of variable z 7→ 1/(z + a). Let
y = 1/(z + a) and thus z = (1− ay)/y, so that

bt(z − 1)z∂z = bt
1− (a+ 1)y

y

1− ay
y

dy

dz
∂y,

= bt
1− (a+ 1)y

y

1− ay
y

(−y2)∂y,

= −bt(ay − 1)((a+ 1)y − 1)∂y.

(2.14)

There are two obvious choices which will both put us back in a situation almost identical to the one encountered
while solving for the death process. Indeed setting a = −1 or a = 0 eliminates the y2∂z monomial and leaves
us with a differential operator solvable by quadrature. For no particular reason we proceed with a = 0. We
now have

ψt(z) = ebt(y−1)∂yψ0(z(y)),

= e−∂yebty∂ye∂yψ0(z(y)),

= ψ0(z((y − 1)ebt + 1)),

= ψ0

(
1

(y − 1)ebt + 1

)
,

= ψ0

(
ze−bt

1− (1− e−bt)z

)
.

(2.15)

For an initial condition with one lineage at t = 0, the state at time t is a random variable Nt ∼ Geom(1−e−bt),
namely a geometric distribution with time-varying parameter 1− e−bt.

The Birth-Death (Speciation-Extinction) Process

The birth-death process is the combination of the previous two processes with instantaneous transitions

A
b−→ 2A,

A
d−→ ∅,

(2.16)

and the the generator
Lbd = (bz − d)(z − 1)∂z.

Using the same change of variable y = 1/(z + a)

Lbd = −((1 + a)y − 1)(b(ay − 1) + dy)∂y.

Two values for a once again cancel the y2∂y monomial, namely a = −1 and a = −r := −d/b. Setting a = −r
and defining ∆ := b− d,

Lbd = ∆
(
y − 1

1− r

)
∂y.
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Proceeding as before along our well threaded path,

ψt(z) = e−
1

1−r ∂ye∆ty∂ye
1

1−r ∂yψ0(z(y)),

= ψ0

r + 1
1

1−r +
(

1
z−r −

1
1−r

)
e∆t

 .
(2.17)

After a fair bit of algebra, during which we are naturally led to define ω(t) := e∆t and p0(t) := r(ω−1)/(ω−r)
from isolating of the absorbing state contribution at z = 0,

ψt(z) = ψ0

p0(t) + (1− p0(t))

(
1− p0(t)

r

)
z

1− p0(t)
r z

 . (2.18)

The expansion about z = 0 of the argument of ψ0(.) readily gives us the explicit time-dependent probabilities
for a birth-death process with initial condition pn(0) = δ1,n,

pn(t) =

 p0(t), n = 0,

(1− p0(t))
(

1− p0(t)
r

)(
p0(t)
r

)n−1
, n ≥ 1.

(2.19)

In other words, at time t we have a product random variable

Nt ∼ Bernoulli(1− p0(t)) Geom(1− p0(t)/r).

Innovation (Yule/Geometric Burst) Process

Consider a phylogeny of total depth T sporadically undergoing at rate ρ a process whereby we initiate a Yule
process happening on a short timescale τ � T with a high speciation rate σ in such a a way that the product
στ ∼ O(1). We can think of ρ as the rate at which innovations arise and open previously unexplored regions
of niche space, allowing thus a period (over timescale τ) of rapid diversification (with diversification rate σ),
followed by a saturation once ecological processes equilibrate anew. Looking at Equation 2.15 we see that the
only important parameter that controls the characteristic size of bursts is g := 1− e−στ , 0 < g < 1 and is
itself parametrized by fixed values of the product στ . Indeed the mean burst size k̄ = 1/(1− g). Symbolically,
each lineage

A
ρ(1−g)gk−1

−−−−−−−→ kA, k ≥ 1, (2.20)

and thus in terms of combinatorial classes

zn
ρn(1−g)gk−1

−−−−−−−−→ zn+k−1.

The generator can now be constructed using the expansion for 1/(1 − xz) around z = 0. Alternatively,
inspection of Equation 2.15 for the Yule process gives us an equivalent but more succinct combinatorial
representation

zn
ρn−→ (1− g)

1− gz z
n
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and therefore its stochastic generator

Lgeom = ρ

(
(1− g)
1− gz − 1

)
z∂z,

= ρg
(z − 1)z
1− gz ∂z.

(2.21)

All models for which the product στ is equal are indistinguishable from one another. In other words g
parametrizes a whole classes of innovation processes. The precise values of σ and τ can not be determined,
only their product. If a geometric burst process happens over a timescale half as long and with a diversification
rate twice as high as another diversification process it is then indistinguishable from the latter. Indeed
στ = (2σ)(τ/2) = (aσ)(τ/a).

It is not obvious whether there exists a simple change of variable z = f(y) that would transform the
above expression into one with y∂y as the highest degree monomials. If there were we could then solve the
master equation exactly for the innovation process. We did attempt to do so by trying many different choice
of change of variable but in the end seeking an analytic expression proved intractable. Indeed the factor
1/(1− gz) generates an infinite number of monomials with increasing degrees of z. Nonetheless in the next
section we will describe a numerical method that allows us to extract exact time-varying probabilities for
processes of this kind. Yet before doing so we would like to introduce one additional process at the core of
this work.

Heterogeneous Innovation (Beta-Geometric Burst) Process

We have seen how a geometric burst process with a given value of g characterizes a whole class of geometric
processes with rescaled rates and temporal extents. In phylogenies spanning billions of years of evolution
across vast geographic regions there is no reason to expect that all bursts neatly fall within one given class,
and therefore we need to introduce an additional degree of freedom to capture the heterogeneity across those
classes. To do so we make g a random variable which follows a beta distribution Beta(g|α, β). The two
parameters α and β control the weight given to values of g close to 0 and 1, respectively, and therefore the
weight of burst processes with characteristically small and large mean burst sizes. Explicitly, and substituting
η in place of ρ to distinguish between the rate of geometric innovation and the rate of heterogeneous innovation,∫ 1

0
η(1− g)gk−1 Beta(g|α, β)dg = η

B(α, β)

∫ 1

0
gα−1(1− g)β−1(1− g)gk−1dg,

= η

B(α, β)

∫ 1

0
g(α+k−1)+1(1− g)(β+1)−1dg,

= η
B(α+ k − 1, β + 1)

B(α, β) ,

= ηβ
Γ(α+ k − 1)Γ(α+ β)

Γ(α+ β + k)Γ(α) ,

(2.22)

where the beta function B(α, β) = Γ(α)Γ(β)/Γ(α+ β), and therefore symbolically

A
ηβ

Γ(α+β)
Γ(α)

Γ(α+k−1)
Γ(α+β+k)−−−−−−−−−−−−→ kA.

12



Similarly for the generator we compound Equation 2.21 with a beta distribution as follows:

Lbetageom = η(z − 1)z
B(α, β)

∫ 1

0
gα−1(1− g)β−1 g

1− gz dg ∂z

= η(z − 1)z
B(α, β)

∫ 1

0

gα(1− g)β−1

1− gz dg ∂z,

= η
B(α+ 1, β)
B(α, β) 2F1(1, α+ 1, α+ β + 1; z)(z − 1)z∂z,

= η
α

α+ β
2F1(1, α+ 1, α+ β + 1; z)(z − 1)z∂z.

(2.23)

where in going from the first to the second line we used the integral representation of Euler type for the
ordinary hypergeometric function 2F1. Omitting all details, the combinatorial class of the heterogeneous
innovation process is represented by the tranformation

zn
ηn−−→ β

α+ β
2F1(1, α, α+ β + 1; z)zn. (2.24)

Finally we want to mention that Equation 2.22 at large k,

A
k→∞∼ k−β−1

−−−−−−−→ kA,

which indicates that in this model the burst size distribution is a power-law with β controlling the exponent of
the tail. This distribution has neither a finite mean nor variance. This is surprising given that it compounds
geometric innovation models which themselves have finite mean and variance.

Incomplete Lineage Sampling

Except perhaps for large-scale datasets like The Earth Microbiome, we do not expect any given sample to
contain all OTUs simply by virtue of limits on the experimenter’s resources and sampling effort. This inherent
incomplete lineage sampling can be approximated by a Bernouilli trial with success probability (or sampling
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fraction) f . Given an unsampled PGF ψ(z), the modified PGF following a sampling event is given by

ψ(1− f + fz) =
∞∑
n=0

pn(1− f + fz)n,

=
∞∑
n=0

n∑
k=0

pn

(
n

k

)
(1− f)kfn−kzn−k,

= p0

(
0
0

)
(1− f)0(fz)0,

+ p1

[(
1
0

)
(1− f)0(fz)1 +

(
1
1

)
(1− f)1(fz)0

]
+ p2

[(
2
0

)
(1− f)0(fz)2 +

(
2
1

)
(1− f)1(fz)1 +

(
2
2

)
(1− f)2(fz)0

]
+ . . . ,

= p0

(
0
0

)
(1− f)0(fz)0 + p1

(
1
1

)
(1− f)1(fz)0 + p2

(
2
2

)
(1− f)2(fz)0 + . . .

+ p1

(
1
0

)
(1− f)0(fz)1 + p2

(
2
1

)
(1− f)1(fz)1 + p3

(
3
2

)
(1− f)2(fz)1 + . . .

+ p2

(
2
0

)
(1− f)0(fz)2 + p3

(
3
1

)
(1− f)1(fz)2 + p4

(
4
2

)
(1− f)2(fz)2 + . . .

+ . . .

=
∞∑
n=0

∞∑
m=0

pn+m

(
n+m

m

)
(1− f)nfmzm.

(2.25)

To go from line three to line four and five we regroup terms that fall along the diagonals of line two.
This expression follows from the straightforward substitution z → 1 − f + fz which stipulates that

each lineage in the PGF is left intact if it is successfully sampled with probability f , and otherwise it is
unsuccessfully sampled with probability 1− f and replaced by the null combinatorial object 1. Indeed one
should see 1 − f + fz as a stand-in for (1 − f)z0 + (f)z1. The right-hand side of Equation 2.25 is also
straightforward to interpret. In words, the probability of having n lineages at time t encapsulated in the
coefficients of the power series of ψt(z) are replaced after the shift ψ(z)→ ψ(1− f + fz) by probabilities of
observing n lineages after sampling with intensity f . All states with n or more lineages (hence the n+ k,
k ≥ 0) now contribute to the probability of observing n lineages in a sample provided that exactly n of them
are successfully sampled with joint success probability fn and the k reminding ones all fail to be sampled with
joint failure probability (1− f)k. Finally the binomial coefficient

(
n
k

)
accounts for the number of equivalent

reorderings of n successes and k failures.

2.2.3 Numerically Exact Solution of the Master Equation

Method of Characteristics for First Order Quasi-Linear PDE

We mentioned above that master equations with generators containing a geometric or hypergeometric burst
processes (Eqs. 2.21 and 2.23) are for all practical purposes intractable to solve analytically. Luckily all these
processes and their combinations lead to quasi-linear master equations of first order of the form

∂tUt(z) = h(z)∂zUt(z). (2.26)

14



which are in principal easily solved by the method of characteristics. We will moreover only have to care about
solving such equations with initial conditions U0(z) = z. With those provisions, the method of characteristics
transforms the partial differential equation Equation 2.26 into an ordinary autonomous differential equation
where

Ut(z) = ut,

dut
dt

= h(z),

u0 = z.

(2.27)

For the BD, BDI, and BDH models we have

hBD(u) = (bu− d)(u− 1),

hBDI(u) =
(
bu− d+ ρ

gu

1− gu

)
(u− 1),

hBDH(u) =
(
bu− d+ η

α

α+ β
2F1(1, α+ 1, α+ β + 1, u)

)
(u− 1).

(2.28)

Once again those equations are not solvable analytically (except for the BD model), but they are solvable
numerically.

Hypergeometric Function 2F1

As one can see the hypergeometric function 2F1 makes an appearance in the equation of the BDH model.
It is therefore imperative to have on hand a way to rapidly evaluate this function for various values of α,
β, and z. Numerical functions are readily available through the scipy python package, but we have found
their implementation to be unstable and incorrect in various region of the complex plane. We experimented
with the mppath python package for multi-precision arithmetic but while the accuracy is excellent its slow
speed made it completely impractical to use for our purposes. We therefore implemented our own method,
hyp2f1a1 to evaluate 2F1(a, b, c, z) for the special case a = 1. To do so we use Gauss’ continuous fraction
representation set at a = 1,

2F1(1, b, c, z) =
1

1 +
− bz

c+
(b− c)z

c+ 1 +
− c(b+ 1)z

c+ 2 +
2(b− c− 1)z

c+ 3 +
− (c+ 1)(b+ 2)z

c+ 4 +
.. .

, (2.29)
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which we rewrite

2F1(1, b, c, z) =
1

1−
bz
c

1−
(c−b)z
c(c+1)

1−
c(b+1)z

(c+1)(c+2)

1−
2(c−b+1)z
(c+2)(c+3)

1−
(c+1)(b+2)z
(c+3)(c+4)

1−
. . .

. (2.30)

This form allows us to use the forward series recurrence algorithm[78] to evaluate the continued fraction in a
stable way.

2.2.4 Observed Past Subtree Generating Function (OPSGF)

Solving the master equation gives us the probability generating function Ut(z) =
∑∞
k=0 pk(t)zk of the

probability distribution pk(t), k ≥ 0 of observing k lineages at time t given that we started at time 0 with
only one lineage. Alternatively, if we take t to increase towards the past, if we start at time t in the past and
observe at t = 0. Those are not yet the probabilities of interest. Each subtree within a phylogeny does start
with one lineage at time t in the past and subtend k descendant lineages at some time s closer to the present,
but only is each of those lineages at time s have at least one survive lineage at t = 0. To account for this
we need must condition on survival of every one of the k lineages of the subtree, and on the survival of the
initial lineage itself. Moreover we want to consider not only survival in terms of not going extinct, but of
have been successfully sampled as well.

Generating Function Approach

We first describe the generating function approach to obtaining observed past subtree probabilities using the
OPSGF. If this approach seems a bit obscure and too expedient we will show in the next subsection how to
recover this conditional subtree generating function using a simpler but more involved probabilistic approach.

Consider first the probability P (extinct or extant but not sampled) of a lineage starting at time s to have
its descendant either go extinct at some point between time s and 0, or to remain extant at time 0 yet not
successfully sampled with probability 1− f . We can write this probability

P (extinct or extant but not sampled) = p0(s) +
∑
k≥1

pk(s)(1− f)k. (2.31)

Within this sum the first term p0(s) is the probability that all descendants go extinct at some point between
time s and the present, and all other terms pk(s)(1− f)k are the probabilities that accounts for cases when k
lineages remain extant but were unsuccessfully sampled under a sampling effort f . In term of the probability
generating function this is simply

Ps(extinct or extant but not sampled) = Us(1− f). (2.32)
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It follows immediately that the probability of being both extant and successfully sampled

Ps(extant and sampled) = 1− Us(1− f). (2.33)

Consider now a lineage that starts at time t and evolves until time s ≤ t with probability generating
function Ut−s(z). The atom z marks an ‘extant’ lineages present at time s, with z0 = 1 the constant term
associated with the probability of no lineages being present, i.e. being all extinct, at time s. It follows that
the presence of n extant lineages will be associate with the monomial zn times the probability of this event.
We substitute each lineage z by individually splitting them into their descendant lineage which will go extinct
between s and the present or are extant yet fail to be sampled, which we replace by the empty atom z0 = 1
weighted by the probability Us(1− f) of such an event, and those that are extant and sampled which we will
mark with the atom y weighted by the associated probability of such an event, namely y(1− Us(1− f)). In
other words we apply the substitution z 7→ Us(1− f) + y(1− Us(1− f)). Therefore the unconditional PSGF

Φ̃f (y, t, s) = Ut−s (Uf (1− f) + y(1− Us(1− f))) ,

=
∑
k≥0

φ̃(k)(t, s)yk. (2.34)

We say unconditional because this generating function includes a constant term, i.e. the term with atom
y0 = 1, weighted by the probability φ̃(0)(t, s) of not observing any lineage in the present, that is it does not
remove the event whereby the whole subtree goes extinct. This probability

φ̃
(0)
f (t, s) = Φ̃f (0, t, s)

= Ut−s(Ut(1− f)),

= Ut(1− f).

(2.35)

Naturally this case can never be observed without fossil data and/or time-series. To condition on at least one
lineage being extant and obtain the OPSGF, we subtract this probability and renormalize by the remaining
total probability. The resulting generating function

Φf (y, t, s) = Φ̃(y, t, s)− Φ̃f (0, t, s)
1− Φ̃f (0, t, s)

,

= Ut−s(Us(1− f) + y(1− Us(1− f)))− Ut(1− f)
1− Ut(1− f) ,

=
∑
k≥1

φ
(k)
f (t, s)yk.

(2.36)

One can immediately see that φ(k)
f (t, s), k ≥ 1 is a genuine normalized probability distribution by setting
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y = 1. Indeed

Φf (1, t, s) =
∑
k≥1

φ
(k)
f (t, s),

= Ut−s(Us(1− f) + 1− Us(1− f))− Ut(1− f)
1− Ut(1− f) ,

= Ut−s(1)− Ut(1− f)
1− Ut(1− f) ,

= 1− Ut(1− f)
1− Ut(1− f) ,

= 1.

(2.37)

Probabilistic Approach

The unconditional probability φ̃(k)(t, s) of observing k ≥ 0 lineages (technically we can not observe k = 0
unless we have a fossil record) at time s in the past descending from a unique lineage starting at time t > s is
given by the probability of going from 1 lineage at time t to n+ k lineages at time s times the probability
that each of the k observed lineages have at least 1 observed extant and sampled lineage times the probability
that every of the n lineages are extinct or if they are extant they were not sampled. We will make explicit
the transition from m lineage to n lineages using the notation m→ n. The probability

φ̃(k)(t, s) =
∞∑
n=0

p1→n+k(t− s)
(
n+ k

k

) ∞∑
j=0

pn→j(s)(1− f)j(1−
∞∑
m=0

p1→m(s)(1− f)m). (2.38)

Using the independence between lineages we can write

∞∑
j=0

pn→j(t)zj =

 ∞∑
j=0

p1→jz
j

n

and therefore

φ̃(k)(t, s) =
∞∑
n=0

p1→n+k(t− s)
(
n+ k

k

)
(Us(1− f))n (1− Us(1− f))k,

⇒
∞∑
k=0

φ̃(k)(t, s)yk =
∞∑
m=0

∞∑
n=0

p1→n+k(t− s)
(
n+ k

k

)
(Us(1− f))n (1− Us(1− f))kyk,

= Ut−s(Us(1− f) + y(1− Us(1− f))),

= Φ̃f (y, t, s),

(2.39)

where we used the identity Equation 2.25 to go from the second to the third line. The rest of the reasoning is
the same; the observed past subtree distribution φ

(k)
f (t, s), k ≥ 1 is simply obtained by omitting φ̃(0)

f (t, s)
from the distribution and renormalizing, namely

φ
(k)
f (t, s) =

 0, k = 0,
φ̃

(k)
f

(t,s)

1−φ̃(0)
f

(t,s)
, k ≥ 1,

(2.40)

for which it is easy to show that its probability generating function is nothing but the OPSGF Equation 2.36.
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Coarse-Grain Property of the OPSGF

The OPSGF also satisfies the Chapman-Kolmogorov property

Φf (Φ(u, s, y), t, u) = Φf (y, t, s).

This can be verified using Equation 2.36 and the Chapman-Kolmogorov property of Ut itself, to wit

Φf (Φf (y, r, s), t, r) =

Ut−r(Ur(1− f) +
[
Ur−s(Us(1−f)+y(1−Us(1−f)))−Ur(1−f)

1−Ur(1−f)

]
(1− Ur))− Ut(1− f)

1− Ut(1− f) ,

= Ut−r(Ur−s(Us(1− f) + y(1− Us(1− f)))− Ut(1− f)
1− Ut(1− f) ,

= Ut−s(Us(1− f) + y(1− Us(1− f)))− Ut(1− f)
1− Ut(1− f) ,

= Φf (y, t, s).

(2.41)

Composing and collecting terms of the power series (and shortening the notation),

Φf (Φf (y, r, s), t, r) =
∑
k≥1

φ1
tr

(
φ1
rsy + φ2

rsy
2 + φ3

rsy
3 + φ4

rsy
4 + . . .

)
+
∑
k≥1

φ2
tr

(
φ1
rsy + φ2

rsy
2 + φ3

rsy
3 + φ4

rsy
4 + . . .

)2
+
∑
k≥3

φ3
tr

(
φ1
rsy + φ2

rsy
2 + φ3

rsy
3 + φ4

rsy
4 + . . .

)3
+
∑
k≥4

φ4
tr

(
φ1
rsy + φ2

rsy
2 + φ3

rsy
3 + φ4

rsy
4 + . . .

)4
+ . . . ,

= φ1
rsφ

1
rsy

+
(
φ1
trφ

2
rs + φ2

trφ
1
rsφ

1
rs

)
y2

+
(
φ1
trφ

3
rs + φ2

tr

(
φ1
rsφ

2
rs + φ2

rsφ
1
rs

)
+ φ3

trφ
1
rsφ

1
rsφ

1
rs

)
y3

+
(
φ1
trφ

4
rs + φ2

rs

(
φ1
rsφ

3
rs + φ3

rsφ
1
rs + φ2

rsφ
2
rs

)
+φ3

ts

(
φ1
rsφ

1
rsφ

2
rs + φ1

rsφ
2
rsφ

1
rs + φ2

rsφ
1
rsφ

1
rs

)
+ φ4

tsφ
1
rsφ

1
rsφ

1
rsφ

1
rs

)
y4

+ . . . .

(2.42)

Induction gives us the decomposition

φ
(k)
f (t, s) =

∑
c∈Comp(k)

φ(|c|)(t, u)
∏
λ∈c

φ
(λ)
f (u, s),

=
∑

π∈Part(k)

|Comp(π)|φ(|c|)
f (t, u)

∏
λ∈π

φ
(λ)
f (u, s).

(2.43)

in terms of partitions and compositions. Here Comp(k) is the set of compositions of the number k and |c|
the number of parts in a given composition. Similarly Part(k) is the set of partitions of k. By an abuse of
notation Comp(π) is also the set of compositions equivalent to a partition π. Two compositions are said
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to be equivalent to a partition π iff both multisets of their parts are equals, e.g. given the number 15, a
composition [5, 4, 1, 5] ∼ [1, 5, 5, 4], but [5, 5, 4, 1] 6∼ [5, 4, 4, 2]. For a partition π of k, the size of the set of its
equivalent compositions is given by the multinomial coefficient.

|Comp(π)| =
(

|π|
mπ(1),mπ(2), . . . ,mπ(k)

)
= |π|!∏k

i=1mπ(i)!
(2.44)

where mπ(i) is the multiplicity of parts of size i in k. For example for k = 15 and

π = [5, 5, 2, 1, 1, 1]⇒ mπ(i) =


3, i = 1
1, i = 2,
2, i = 5,
0, i ∈ {3, 4, 6, 7, . . . , 15},

(2.45)

and thus |Comp(π)| = 60. In other words slicing a subtree of size k in two at some time u between t and s

is equivalent to all ways of stitching subtrees from u to s with sizes
∑
λ = k at the crown of all subtrees

from t to u of sizes |c| ≤ k. Figure 2.3 shows the equivalent graphical decomposition of the above expansion.
This property naturally gives us the Hastings ratio we will use in the Metropolis-Hastings MCMC algorithm
described in Section 2.3 to sample coarse-grained tree using the space of integer multipartitions.

Figure 2.3: Graphical representation of the Chapman-Kolmogorov decomposition of observed past subtree
probabilities. Terms in small parentheses give equal contributions.
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2.2.5 Coarse-Grained Tree Likelihood

The likelihood L of observing a coarse-grained tree TK represented by coarse-grain data {(ti, si, ki)}i given
a sampling fraction f and a model with parameter values θ is the product of the observed past subtree
probabilities of the coarse-grain data, namely

L[TK |f, θ] =
∏
i∈IτK

φ
(ki)
f (ti, si|θ). (2.46)

There are interesting cancellations in the above expression which are not explicitly mentioned in previous
writings of the likelihood e.g. of the BD model applied to bifurcating tree[79]–[82]. Terms involved in these
cancellations are essential in making φ(k)(t, s) an actual probability distribution and writing e.g. partial
likelihood that does not include all subtrees. Omitting subtrees is sometimes useful in speeding up the
inference process. Using the notation of Equation 2.2 the coarse-grained likelihood

L[TK ] =
∏

σ=1...K

∏
i∈Iσ

φ
(kσi)
f (tσi, sσi|θ). (2.47)

We know that

φ(k)(t, s) = 1
k!

∂kΦ(y, t, s)
∂yk

∣∣∣∣
y=0

,

= (1− Us(1− f))k

1− Ut(1− f) U
(k)
t−s(Us(1− f)).

(2.48)

and therefore

L[TK ] =
∏

σ=1...K

∏
i∈Iσ

(1− Usσi(1− f))kσi

1− Utσi(1− f) U (kσi)
tσi−sσi(Usσi(1− f)). (2.49)

Using the identity Equation 2.3 it follows that

L[TK ] =
f

∑
i∈I1

ki∏
i∈I1

U
(k1i)
∆ (1− f)

1− UT (1− f)
∏

σ=2...K

∏
i∈Iσ

U (kσi)
∆ (U(σ−1)∆(1− f)). (2.50)

where we obtain the f factor from the use of Equation 2.9, to wit

1− Us1i(z)|z=1−f = 1− U0(z)|z=1−f ,

= 1− etL[z,∂z]z
∣∣∣ t=0
z=1−f

,

∼ tL[z, ∂z]z| t=0
z=1−f

,

= f.

(2.51)

.

Equivalence with Traditional Macroevolutionary Tree Likelihoods

In this subsection we want to show that in the limit of an infinitesimal coarse-graining ∆→ δt, Equation 2.50
for the BD model recovers the traditional BD likelihoods found e.g. in[79]–[81]. Since those likelihoods
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decompose the tree in terms of branches rather than subtrees we first need to show the identify

φ
(1)
f (t, r)φ(1)

f (r, s) = φ
(1)
f (t, s). (2.52)

Equation 2.43 gives us this identity for free but here we will prove it explicitly using the chain rule. To begin
with, the first derivative of the Chapman-Kolmogorov identity

∂

∂z
Ut−s(z) = ∂

∂z
Ut−r(Ur−s(z))

⇒ U (1)
t−s(z) = U (1)

t−r(Ur−s(z))U
(1)
r−s(z).

(2.53)

Next we evaluate both sides at z = Us(1− f) and obtain

U (1)
t−s(Us(1− f)) = U (1)

t−r(Ur−s(Us(1− f)))U (1)
r−s(Us(1− f)),

= U (1)
t−r(Ur(1− f))U (1)

r−s(Us(1− f)).
(2.54)

Finally,

φ
(1)
f (t, s) = U (1)

t−s(Us(1− f))1− Us(1− f)
1− Ut(1− f) ,

= U (1)
t−r(Ur(1− f))U (1)

r−s(Us(1− f))1− Us(1− f)
1− Ut(1− f) ,

=
U (1)
t−r(Ur(1− f)
1− Ut(1− f)

[
1− Ur(1− f)
1− Ur(1− f)

]
U (1)
r−s(Us(1− f))(1− Us(1− f)),

= φ
(1)
f (t, r)φ(1)

f (r, s).

(2.55)

The decomposition of a tree in [81] is constructed by associating a probability P ( ,̀ t, s) of a lineage to evolve
from some time t until some time s at which point it undergoes a speciation event into two lineages. Under
infinitesimal coarse-graining R∞ a single lineage followed by such an event contributes to our likelihood

P ( ,̀ t, s) = φ
(2)
f (s+ δt, s)

N=(t−s−δt)/δt∏
i=0

φ
(1)
f (t− iδt, t− (i+ 1)δt),

= φ
(1)
f (t− s− δt)φ(2)

f (s+ δt, s).

(2.56)

The contribution from the speciation event at the node

φ
(2)
f (s+ δt, s) = 1

2
(1− Us(1− f))2

1− Us+δt(1− f)U
(2)
δt (Us(1− f)). (2.57)

Expanding Uδt to first order in δt for the BD model,

U (2)
δt (Us(1− f)) ∼ ∂2

∂z2 (1 + δt(bz − d)(z − 1)∂z)z
∣∣∣∣
z=Us(1−f)

,

= 2bδt,
(2.58)

and therefore
φ

(2)
f (s+ δt, s) = bδt

(1− Us(1− f))2

1− Us+δt(1− f) . (2.59)
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Effecting all cancellations mentioned in the previous section and setting s + δt → s we find after a little
algebra that the likelihood

L[T∞] =
fLbL−1δtL−1∏

i∈branches U
(1)
ti−si(Usi(1− f))

1− UT (1− f) . (2.60)

for a tree of size L and thus L − 1 internal nodes. Changing units λ = b = 1, r = µ/λ = d/b, and letting
ωt = e(1−r)t, we can write Equation 2 in [81] for constant birth and death rates

Φ(t) = 1− wt
1
f + wt−1

1−r
. (2.61)

We claim now that for the BD model,
UT (1− f) = Φ(T ) (2.62)

where we changed their t to our notation t = T . In this subsection Φ is their notation and not to be confused
with the OPSGF. Our Equation 2.18 is written in term of the absorption probability

p0(T ) = r
ωT − 1
ωT − r

and therefore
ωT = 1− p0(T )

1− p0(T )/r .

Using this expression for ωT and after some algebra

Φ(T ) = 1−
1−p0(T )

1−p0(T )/r
1
f + p0(T )/r

1−p0(T )/r

,

= p0(T ) + 1−
1−p0(T )

1−p0(T )/r
1
f + p0(T )/r

1−p0(T )/r

+ p0(T ),

= p0(T ) + (1− p0(T ))

1−
1

1−p0(T )/r
1
f + p0(T )/r

1−p0(T )/r

 ,
= p0(T ) + (1− p0(T ))

1
f + p0(T )/r

1−p0(T )/r −
1

1−p0(T )/r
1
f + p0(T )/r

1−p0(T )/r

,

= p0(T ) + (1− p0(T ))
1
f − 1

1
f + p0(T )/r

1−p0(T )/r

.

= p0(T ) + (1− p0(T )) 1− f
1− p0(T )/r

1−p0(T )/rf
,

= p0(T ) + (1− p0(T )) (1− p0(T )/r)(1− f)
1− p0(T )/r(1− f) ,

= UT (1− f).

(2.63)

We further claim that
U (1)
t−s(Us(1− f)) = Ψ(s, t)
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where the r.h.s is Equation 3 in [81]. We start by using Equation 2.62 to rewrite the l.h.s

U (1)
t−s(z)

∣∣∣
z=Us(1−f)

so that we can first take the derivative w.r.t. z rather than w.r.t. 1− f . Indeed

U (1)
t−s(z) = ∂

∂z

(
1− ωt−s

1
1−z + ωt−s−1

1−r

)
,

= ωt−s

[
1 + ωt−s − 1

1− r (1− z)
]−2

(2.64)

such that

U (1)
t−s(z)

∣∣∣
z=Us(1−f)

= ωt−s

[
1 + ωt−s − 1

1− r (1− z)
]−2

∣∣∣∣∣
z=Us(1−f)

,

= ωt−s

[
1 +

ωs
ωt−s−1

1−r
1

1−z + ωs−1
1−r

]−2
∣∣∣∣∣∣
z=1−f

,

= ωt−s

[
1 +

ωs
ωt−s−1

1−r
1
f + ωs−1

1−r

]−2

,

= Ψ(s, t).

(2.65)

This is Ψ(s, t) for constant birth and death rates. This complete the proof of the equivalence between
Equation 2.60 and Equation 1 of [81]. The infinitesimal factor δtL−1 in Equation 2.60 has no effect other
than indicating that our likelihood is a probability while their likelihood is a probability density.

Numerical Determination of Subtree Probabilities

Provided we can quickly, numerically, and repeatedly solve Equation 2.27 for any (most) values of z in
the complex plane then we can use the method of complex derivation based on Cauchy’s integral formula
Equation 2.6 to extract probabilities φ(k)

f (t, s) from Φf (z, t, s) up to very high values of k[83]–[85]. This is in
stark contrast with finite difference methods to estimate derivatives and which would allow us to extract at
best φ(1)

f (t, s), φ(2)
f (t, s), and perhaps φ(3)

f (t, s) if we are lucky. It also contrasts with linear algebra methods
based on matrix exponentiation algorithms. Those methods can access probabilities up to k ∼ O(1, 000)
with rather bad truncation errors—especially in the BDH model—and have very large memory footprint
O(k3). Numerical Cauchy integration gives us access to extremely small probabilities φ(k)

f (t, s) at order
k ∼ O(100, 000) without issue and within floating point accuracy. If one is patient enough, derivatives at
order k ∼ O(1, 000, 000) are easily accessible as well. As explained in [85] this is possible if we are mindful
about issues of floating-point under- and overflow which are in turn tamed by carefully choosing the radius
r of the contour of Equation 2.6. This method uses the simple and exponentially convergent trapezoidal
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approximation to Equation 2.6[86]

φ
(k)
f (t, s) = 1

k!
∂k

∂yk
Φf (y, t, s)

∣∣∣∣
y=0

,

= 1
πrk

∫ 2π

0
eikθΦf (reiθ, t, s),

= 1
nrk

n−1∑
j=0

e−2πijk/nΦf (re2πij/n, t, s).

(2.66)

Equation 2.66 is nothing but the Fast Fourier Transform (FFT) of Φ for which there are many readily available
fast and accurate algorithms. For a slice with the largest subtree of size kmax we set n = nmax = 2dlog2 kmax+1e.
The FFT then gives us all probabilities from k = 0, which vanishes, to nmax − 1 from which we use only
probabilities k = 1 to k = kmax. For the BDH model the hypergeometric function introduces a branch point
at |y| = 1 and we can simply set the integration radius r = 1− 1/nmax. For the BD and BDI model we find
the integration radius automatically using the optimization criterion of [85] which we seed with an initial
guess obtained from the stable pole-finding algorithm of [87]. Alternatively for the BD model we can also
simply use the exact probability Equation 2.18.

To give a taste of the power of the approach using complex integration of generating functions, Figure ??
shows the match between subtree probabilities φ(k)

f (t, s) obtained using Cauchy integration and matrix
exponentiation. The matrix exponentiation approach uses Equation 2.38 where the transition probabilities
p1→k(t) is determined using the exact numerical exponentiation of the truncated transition matrix W of
the BDH process. The complex integration approach uses the FFT to calculate Equation 2.66 for the same
process. Because of the O(k3) scaling of the algorithm behind numerical matrix exponentiation, we truncate
at k = 1024 which roughly corresponds to the point beyond which it becomes numerically impractical, and
eventually impossible, to proceed this way. For the complex integration approach we push the algorithm all
the way up to k = 216 without issue. Notice the appearance of dramatic truncation artifacts which appears
in the tail of the matrix exponentiation approach and the lack thereof for the complex integration approach.

Empirical Tree Likelihood

Figure 2.5 shows the 16 subtree size distributions obtained from coarse-graining the timetree of all samples
of animal proximal gut microbiomes combined. While this set or distributions represents only one biome it
is qualitatively very typical of trees across the EMP dataset. A few features are of note; the approximate
power-law for k ≥ 2 with a common exponent as shown by the green visual guide, in this case −1.65, the
deviation from this power-law exponent in the first slice, and the deviation from the power-law at k = 1
across most slices. Figure 2.6 similarly shows the empirical subtree size distribution of the coarse-grained
timetree of the whole Earth microbiome. The same features are present except the approximate power-law
exponent here is −1.2.

The largest subtree in Figure 2.5 appears in the first slice and has size kmax = 5, 556. In the second
slice kmax = 1, 199, and in the third slice kmax = 1, 144. For the whole Earth microbiome shown in
Figure 2.6 the second and seventh slices contain subtrees of size kmax ∼ 50, 000 and for several other slices
kmax ∼ 5, 000 − 10, 000. This means that the number of sample points nmax taken along the contour in
Equation 2.66 would range between 8, 192 and 16, 384 (half the points are needed in reality because of the
positivity of spectrum of Φf (y, t, s) and thus the possibility of using the Hermitian FFT (hFFT)). This
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Figure 2.4: Comparison of the probabilistic approach using truncated matrix exponentiation and the
generating function approach using complex integration. Parameters for the process are
{f, b, d, η, α, β} = {0.7, 1.0, 1.0, 1.0, 5.1, 1.1} and times t = 5/16 and s = 4/16.

is no issue at all for the method presented in Subsection 2.2.5 except perhaps for speed. Indeed each
evaluation of Φf (y, t, s) requires three evaluation of U , namely Ut(z) and Us(z) at z = 1− f and Ut−s(z) at
z = Us(1− f) + y(1− Us(1− f)). Combined and taking into account the use of the hFFT we must for some
of the slices perform between 12, 285 and 24, 573 evaluations of the function U each of which requires the
numerical integration of the differential equation Equation 2.26. Obviously this procedure can become slow
for large timetrees.

Fortunately the power-law-like behavior already appears very early in the bulk of each subtree size
distributions, i.e. for k ≥ 2. This means that we can truncate the empirical distribution by imposing
kmax ≤ 256− 4096 as the maximum empirical subtree size that enters the computation of Equation 2.47. In
other words neglecting outliers far in the tail induces a significant speed-up without sacrificing too much
information from the empirical distribution. On the other hand this can sometimes lead to poor goodness of
fit results.

On important point remains. Why is there an unmistakeable quantitative difference between the first slice
and the others in the exponent of the tail of the empirical distribution as indicated by simple comparison with
the guide. The first potential reason could be the fact that the original EMP phylogenies are obtained from
OTU data. Using OTUs exposes us to potentially significant artifacts in the resolution of the arrangement of
branching close to the present. In other words the quality of the data may be at fault. The second potential
reason goes in the other direction. If we assume the OTU data to be valid, then the phylogenies will by design
ignore their associated relative abundance. That is to say each OTU is represented as a single lineage even
though it is surrounded by a cluster of closely related sequences, each of which could be valid sequences of
microbes that have recently diverged away from the representative sequence. An OTU in effect coarse-grains
its cloud of closely related sequences. The relative size of those clusters across OTUs is not reflected in the
phylogeny. Adding back the relative sizes of those cluster as small polytomies sitting at the tip of each leaves
may present a simple if approximative way to recover a more accurate empirical subtree size distribution in
the first slice.
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Figure 2.5: Shown in blue the empirical subtree size distributions of the animal proximal gut microbiome
tree and in orange their associated cumulative distributions. The 16 subtree size distributions from the
present to the past are shown from top-left to bottom-right. Notice how both the distributions and
cumulative distributions suggest a heavy tail at least over some range of subtree sizes.
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Figure 2.6: Shown in blue the empirical subtree size distributions of the whole Earth microbiome tree, and
in orange their associated cumulative distributions. The 16 slice distributions from the present to the past
are shown from top-left to bottom-right. Notice how both the distributions and cumulative distributions
suggest a heavy tail at least over some range of subtree sizes.
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Optimization and Parameter Identifiability

To find maximum likelihood estimates (MLE) for parameters {f∗, θ∗} we solve the optimization problem

f∗, θ∗ = argmax
f,θ

L[TK |f, θ]. (2.67)

Parameter sets for our models are given by

f, θ ≡ bf, b− d, BD model
≡ f, b, d, ρ, g, BDI model
≡ f, b, d, η, α, β, BDH model.

(2.68)

Notice that in the BD model b, d, and f are not completely independent and only two parameters are
identifiable. The combination bf, b− d is not unique and could be rewritten any other way but we chose this
one because this is how it appears in the expression we will derive below. This has already been pointed out
by [82]. There is a flat invariant direction in the likelihood along curves bf = b′f ′ and b− d = b′− d′. In other
words, if one finds MLEs f∗, b∗, and d∗, then one can choose a different f∗ → f ′ and then sets b∗ → b∗f∗/f ′

and d∗ → b∗ (f∗/f ′ − 1)−d∗ without affecting the value of the ML. That is to say there are only two effective
parameters rather than what appears to be three parameters in the BD model under incomplete lineage
sampling. This flat direction may cause issues during optimization so one would simply set f = 1 to avoid
them.

Proof of Non-Identifiability of the BD Model

All observables in the likelihood L[τK |f, b, d] are obtained from the OPSGF. Explicitly for the BD model

ΦBD(y, t, s) = bf(1− e(b−d)s)− (b− d)
bf
(
1− e(b−d)t + y(e(b−d)t − e(b−d)s)

)
− (b− d)

. (2.69)

One can see by inspection only two combinations of parameters appear in , namely bf and b− d. There is
thus a global unidentifiability in the BD model with incomplete lineage sampling.

The unconditional PSGF does not suffer the same problem because the extinction rate d would become
independent, but one must remember they would be using it in a situation where subtrees going from 1
lineage to 0 lineages are observed, namely a situation where information about the fossil record is accessible.

Approximate Proof of Identifiability of the BDI and BDH Models

We do not have an explicit expression for the probability generating function of neither the BDI or BDH model
and thus we cannot directly show the identifiability of their parameters. On the other hand we can expand
Equation 2.9 up to some low order of ε with t→ εt ands→ εs, inspect the various parameter combinations
that emerge, and draw an approximate conclusion about identifiability or lack thereof. We do not show the
derivation because of how unwieldy they become. Instead we use a computer algebra system and provide a
short analysis without further details.

At first order of ε the OBSGF ΦBDI(y, εt, εs) can be expressed in terms of parameters f , d, b, and ρg. At
second order we also observe the same set of parameters plus g appearing by itself, which implies that unless
improbable resummations happen we have identifiability for all 5 parameters of the model.
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This result, provided it holds at higher orders of ε, indicates that in contrast to the BD model it is possible
to infer the sampling fraction f in the BDI model. We claim that the same holds for the BDH model. We
have two reason to believe this to be the case. First, the BDI model is nested within the BDH model and is
recovered in the limit α+ β →∞ if the ratio α/(α+ β) = g is kept finite. Second, and perhaps obviously, the
Gauss hypergeometric function 2F1(1, α+ 1, α+ β + 1, z) that appears in the generator of the BDH model is
defined within |z| < 1 by a power series in z with coefficients (α+ 1)n/(α+ β+ 1)n. Within those coefficients,
for n ≥ 2, α and β will always be independent and we have no reason to believe this would not transfer to
ΦBDH .

Numerical Proof of the Sloppiness and Potential Non-Identifiability of the BDH Model

Despite the argument made in the previous section, we find that numerical evidences point to the apparent
and unfortunate non-identifiability of f and the sloppy, perhaps even flat direction[88] that appears to emerge
between parameters f , b, d, and α.

Here’s how we proceed. We generate a synthetic tree with 10,000 leaves poised at parameter val-
ues {f, b, d, η, α, β} = {0.7, 2.0, 0.5, 1.2, 2.0, 1.4}. Then we proceed with the inference over b, d, η, α,
and β while keeping f = 0.7 fixed. The resulting MLE for the parameters are {b∗, d∗, η∗, α∗, β∗} =
{2.0± 0.1, 0.5± 0.4, 0.9± 0.2, 3.4± 1.2, 1.6± 0.2} where the uncertainties are the 68% confidence intervals
found along the the diagonal of the Fisher information, i.e. the diagonal of the inverse of the Hessian matrix,
at the ML point. Those estimates are quite good and indicate that parameters can be inferred quite well
when f is fixed.

Now let us run the inference again but this time including f . The optimization algorithm (Nelder-Mead)
ends up drifting very slowing along f , b, d, and α with very minimal decrease in the negative log-likelihood.
We nonetheless evaluate the Fisher information matrix again at a point along this very slow drift and find
the approximate MLE {f∗, b∗, d∗, η∗, α∗, β∗} = {0.4± 0.6, 3.3± 5.0, 2.1± 5.7, 0.6± 0.7, 5.1± 6.6, 1.6± 0.2}.
The dramatic increase in the uncertainty along a direction combining f , b, d, α and to an extent η now
indicates that the curvature of the negative log-likelihood along it is very low and therefore their identifiability
questionable. It is even possible that some of these parameter uncertainties might eventually converge to
infinity but for the fact that the optimization algorithm is incapable of finding the ridge along which the
curvature vanishes simply because it is incapable of handling the case of singular models.

With this disappointing result in mind, we will resort to setting f = 1 during all model optimizations over
empirical trees and accept the risk of missing the ‘true”, if it exists at all, MLE of f .

2.2.6 Simulating Synthetic Trees

To simulate synthetic trees we use a simple stochastic Gillespie algorithm[89], [90]. For the BDH model, three
processes are possible; the birth process (B) with rate b per lineage, the death process (D) with rate d per
lineage, and the heterogeneous innovation process (H) with rate η per lineage. The algorithm proceeds as
follows:

1. Let T be the total depth of the tree, and n the current number of lineages. Let Ncutoff > 0 and
Tcutoff > 0 be two stopping criteria. Start with T = 0 and a single lineage, the root, of length 0 and
make it active,

2. Iterates:
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(a) If n ≥ Ncutoff then sample leaves with intensity f and return the tree,

(b) Determine the total rate of events ω = (b+ d+ η)n,

(c) Determine the waiting time until next event by drawing ∆t ∼ exp(ω), or equivalently ∆t =
−(ln r)/ω where r ∼ Uniform(0, 1),

(d) Add ∆t to T and to the length of all n active lineages,

(e) If T >= Tcutoff then sample leaves with intensity f and return the tree,

(f) Select a lineage l at random out of the n currently active lineages,

(g) Draw one of three processes B, D, or H with probabilities bn/ω, dn/ω, and ηn/ω, respectively,

i. If B is drawn, then add two active child lineages l1 and l2 to lineage l and deactivate l,
ii. If D is drawn, remove lineage l and contract l’s parent if the parent is left with a single child,

or return an empty tree if l is the root,
iii. If H is drawn, draw g ∼ Beta(α, β), then draw k ∼ Geometric(1−g), k ≥ 1, if k > 1 then add

k active child lineages l1, ..., lk to l and deactivate l, and if k = 1 then simply leave l active,

Notice that it is possible that the tree returned by the algorithm may have more leaves than Ncutoff if the last
process was the H process and k was drawn such that n+ k > Ncutoff. Similarly for T if T + ∆t > Tcutoff.
This implies that we only obtain trees that satisfy the Ncutoff if the last process was a B process, and never
one exactly satisfying T = Tcutoff. We nonetheless take the resulting tree to be sufficiently fine for all practical
purposes.

2.3 Goodness of Fit

It is one thing to determine through model selection that the BDH model fits empirical coarse-grained trees
better than, say, the BD or BDI models, but a better test must asked whether the BDH model stands on its
own. In other words how likely it is that empirical coarse-grained trees are typical of coarse-grained trees
generated by the BDH model poised at its ML parameter estimates. To do so we need a goodness-of-fit test
(GOF) which captures the closeness between the set of empirical subtree size distributions and theoretical
ML subtree size distributions generated by the BDH model.

2.3.1 Exact Goodness-of-Fit Test (eGOF)

We choose as our GOF the G-test[91]. The G-test is a generalization of Pearson’s χ2 test. Rather than using
as a test statistic the square deviation between two distributions, it uses instead the test statistic

G = 2
∑
i

Oi ln Oi
Ei
, (2.70)

where Oi is the expected observed (empirical) number of counts in category i and Ei is the expected
(theoretical) number of counts. The test statistic G is directly related to the Kullback-Leibler divergence

31



DKL. Indeed

G = 2
∑
i

Oi ln Oi
Ei
,

= 2
(∑

i

Oi

)∑
i

P empirical
i ln

Oi
∑
iEi

Ei
∑
iOi

,

= 2N
∑
i

P empirical
i ln P empirical

i

P theoretical
i

,

= 2N
∑
i

DKL

(
P empirical
i ‖P theoretical

i

)
,

(2.71)

where N =
∑
iOi =

∑
iEi is the total number of observations and all sums over i run over categories

such that Oi > 0. Because of this relationship we call this test ‘exact’ in the sense that it captures a true
information theoretic divergence between empirical and theoretical trees. Adapted to coarse-grained trees,

GτK = 2
K∑
σ=1

∑
i,kσ

i
>0
Oσi

(
lnPσ,empirical

i − lnφ(kσi )
f (tσi , sσi )

)
, (2.72)

where σ runs over slices and Pσ,empirical
i = Oσi /N

σ.

2.3.2 Null Hypothesis for the eGOF

Usually for a goodness of fit test on simple distributions there is a known null distribution of the test statistic
given for example in terms of a χ2 distribution with a given number of degrees of freedom. Unfortunately we
do know how to count degrees of freedoms for the distribution of GτK . Intuitively the number of degrees of
freedom might be taken to be the number of categories i with non-zero counts Oi > 0 minus the number of
constraints, namely the total depth T theoretical

TK = T empirical
TK , that the sum of the size of subtrees in the first

slice N theoretical = N empirical is equal, the normalization of the subtree size distribution for each slice, and
that at each interface between two slices the sum of the size of all subtrees must be equal to the number of
subtrees in the previous slice. Unfortunately synthetic experiments we describe next do not agree with this
intuition. We must therefore resort to generating this null distribution using simulations, more specifically
using a Metropolis-Hastings MCMC algorithm.

Finding the null distribution of Gtheoretical
TK amounts to first finding a distribution of typical subtree size

distributions satisfying all above constraints and calculating for each such typical subtree size distribution i

its statistic GiTK . Then we compare Gempirical
TK to the null distribution of GiTK and determine how far in the

tail Gempirical
TK is. In an ideal world we would generate the set of all coarse-grained trees and calculate the test

statistic for each of them, but unfortunately this task is computationally infeasible given the combinatorially
explosive number of such coarse-grained trees. This is why we resort to approximating the null distribution
using a MCMC algorithm.

The algorithm proceeds as follows:

1. Let the first coarse-grained tree in the chain be TK . Call this tree T for short. Calculate and return
GT ,

2. Iterate Niter times:
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(a) Propose a move T ′ =M[T ],

(b) Accept move with probability α = min
[
1, Pr[T ′]

Pr[T ]
g[T |T ′]
g[T ′|T ]

]
,

(c) If the move is accepted set T = T ′,

(d) Return GT .

We choose Niter to be roughly 20 times the total number of subtrees
∑K
σ=2

∑
iO

σ
i such that each subtree will

on average be resampled 20 times. Moves are proposed as follows:

1. Select a slice σ = 2, ...,K at random where each slice is weighted by the number of subtrees it contains,

2. Select a subtree at random in slice σ,

3. For a selected subtree of size k, select at random and without replacement k subtrees k1, k2, ...kk in
slice σ − 1. This is the current partition π = {k1, k2, ..., kk},

4. Let K =
∑k
i=1 ki. Draw uniformly at random a partition π′ of K using Algorithm 5 found in [92] and

let k′ = |π′| the number of parts in π′,

5. Propose T ′ where π is replaced with π′ = {k′1, k′2, ...}.

With this proposal scheme, the Metropolis ratio

Pr[T ′]
Pr[T ] =

φ
(k′)
f (tσ, sσ)

φ
(k′)
f (tσ, sσ)

∏
i φ

(k′i)
f (tσ−1, sσ−1)∏

i φ
(ki)
f (tσ−1, sσ−1)

, (2.73)

and Equation 2.44 gives us the Hastings ratio

g[T |T ′]
g[T ′|T ] = |Comp(π)|−1

|Comp(π′)|−1 = |π′|!∏K
λ=1mπ′(λ)!

∏K
λ=1mπ(λ)!
|π|! . (2.74)

This completes the algorithm. It generates a chain of statistic values GT1 , GT2 , ...GTNiter
. The stationary

distribution of these values converges to the null distribution for GBDH , namely the distribution of typical
values of G of typical trees of the BDH model. The p-value for the test,

p = 1
Niter −Nburnin

Niter∑
i=Nburnin

1[GTi < GT ], (2.75)

gives the probability that a realization of subtree size distributions generated by the BDH model diverges less
from the theoretical subtree size distributions than the empirical subtree size distributions. For example, if
p = 0.95 then it means that 95% of all coarse-grained trees generated by the BDH model are more typical
than the empirical tree, or alternatively that 5% of trees generated by the BDH model are less typical than
the empirical tree. In other words, the null hypothesis is that the model faithfully generates the empirical
tree and its subtree size distributions. Therefore the test fails when the p-value is more than 0.95.

To verify whether this is a reasonable eGOF, we generate 1,000 BDH trees T1, ...T1000 of size approximately
10,000 with parameter values {b, d, η, α, β} = {2.0, 0.7, 1.2, 3.0, 1.3}. For each tree Tj we then generate a chain
of values GjTi with Niter = 106 and Nburnin = 3× 105 and calculate pj . Figure 2.8 shows the distribution of
those 1,000 pj ’s. The distribution is almost uniform between 0 and 1 with a median of approximately 0.5 and
therefore the eGOF is a reasonable one. Even though the mass is evenly split between p < 0.5 and p > 0.5,
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Figure 2.7: On the left we have a current partition and on the right a proposed partition. A subtree in slice
σ represent the number of parts in a partition, and subtrees in slice σ − 1 represent the size of those parts.
Proposing a move in the set of coarse-grained tree is equivalent to drawing at random a partition of the same
number, in this case a partition of 5. In other word we move in the set of coarse-grained tree by reshuffling
small parts of the trees. The Hastings ratio Equation 2.74 corrects for the number of ways to order partitions
on the left and on the right.

the slight inflation of low p-values indicates an undiagnosed biased in the null distribution of trees we believe
comes from the approximate truncation described in Section 2.2.6.

2.4 Data Preparation

2.4.1 Dataset

As the main application of our inference framework we are using the dataset provided by The Earth
Microbiome Project[21], henceforth denoted EMP. More precisely we are using a subset of the dataset, namely
the open-reference OTUs[35] placed on the greengenes 13.8[93], [94] core reference tree using SEPP[95]. Our
method relies on the existence of a timetree where all leaves (representing OTUs) are at equal distance to the
root and moreover in which the root has been identified. Fortunately the greengenes 13.8 reference tree is
already rooted with Archaea as the outgroup. Both the open-reference placement tree given by the EMP and
the greengenes 13.8 reference tree have branches lengths in units of substitutions per base pair and therefore
need to be calibrated, and so we must recreate a suitable reference tree with calibration points out of which
we can later construct a timetree.

Calibrating the Reference Tree

More details about this section can be found in Appendix A. To calibrate the greengenes reference tree we use
the dataset behind the TimeTree of Life[60], [96], specifically for prokaryotes[97]. The prokaryote Timetree
provides 101 calibration points at each node of a family-level tree topology. This topology together with the
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Figure 2.8: Distribution of p-values of the eGOF under the BDH model.

age of the calibration points can be found in Appendix B. Attached to those calibration points are polytomies
of 16S sequences of representatives for each of those families. From the sequence data that was transmitted
to us by Julie Marin we were able to keep 89 of the 101 calibration points after pruning families with no
representatives. Conversely, many sequences did not find a taxonomic match in the family level topology and
were dropped. In the end we have a tree with 6294 representative family level sequences decorating a family
level topology with 89 calibration points.

Next we aligned and placed those 6294 representative timetree sequences into the greengenes 13.8 reference
tree using SEPP. After this step, we found many conflictual placements, i.e. placements for which the
taxonomic information between greengenes and timetree did not agree down to the level of families. To
remediate this problem we built a constraint alignment for FastTree[98], [99] using all representative timetree
sequences and their family level topology. Indeed each internal branch of the family level topology induces a
split with groups of sequences left and right of that split. In other words removing an internal branch in
an unrooted tree breaks it into two mutually exclusive subtree each containing their respective sequences.
The constraint alignment is a tabulated representation of which sequences should indeed be constrained to
fall left or right of given splits. FastTree expects that rows of the constraint alignment enumerate sequences
and columns enumerate expected constrained splits. We then ran FastTree using this constraint alignment
as input for a constrained topology search over the conflictual placement tree containing both greengenes
and timetree sequences obtained in the previous step. Once FastTree terminated this search, we checked
if there remained unsatisfied constraints. When that was the case, we used the output from FastTree and
fed it back as its new input together with the same constraint alignment. We did this a few times until
we did not observe any further decrease in the number of unsatisfied constraints. In our case this number
stabilized at around 60 unsatisfied constraints. With this intermediate output tree we found which sequences
are causing conflicts with the constraint alignment by intersecting the set of all sequences causing the largest
mismatch (i.e. largest number of left-right crosses) between the observed splits and the expected splits in
the constraint alignment. We identified 20 problematic sequences (out of 6294) as the worst minimal set
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of sequences causing those remaining constraint violations. We pruned those problematic sequences from
the intermediate tree and ran FastTree once more with the constraint alignment. Then we do a quick check
with FastTree found that there were no more constraint violation. This is all to say that we restructured the
greengenes reference tree by forcing it to adopt the family level topology provided by the prokaryote timetree
and its representative sequences.

EMP Timetree

More details about this section can be found in Appendix A. Next we go back to the EMP dataset and using
SEPP we place all 8,023,841 open-reference OTUs that were not part of the closed greengenes 13.8 reference set
back onto the improved and calibrated greengenes+timetree reference tree. We then use MPL/PATHd8[63],
[64] to ultrametricize the final EMP + greengenes + timetree placement tree. MPL/PATHd8 are the only
methods we are aware of that can handle trees of size above O(10, 000) OTUs. When correctly implemented
they scale linearly with the number of leaves present in the tree. We want to mention that at first we attempted
to improve slightly over the original authors’ implementation of PATHd8 by introducing the possibility of
weighting each path during calculation of the mean-path length (MPL). We refer to this modification we
weighted MPL (wMPL). We used the relative abundance data provided by EMP as weights. This has the
effect of taking into account the ‘invisible’ polytomies attached below each OTU, mimicking the unresolved
cluster of sequences contained within an OTU and considering them in the calculation of mean-path lengths.
This step is facultative and debatable, and ultimately we abandoned it because the goodness of fit tests from
inferences ended up performing worst. In the end, and because of the calibration point at the LUCA, the
EMP tree has total depth T = 4.2 Byr, which as mentioned in the beginning of Section 2.2 we rescale to 1.

2.5 Summary of Methods

Let us pause here and summaries the sequence of events that happen between inputing a phylogenetic tree
from the EMP dataset and the eGOF:

1. Calibration of the phylogenetic tree from the EMP dataset into a timetree,

(a) Place the sequences from the Timetree project onto the phylogenetic tree of the EMP dataset
using SEPP,

(b) Refine the reconstruction of the augmented EMP tree using FastTree using the known family- and
higher level constraints given by the Timetree project sequences,

(c) Root the resulting tree using Archaea as outgroup,

(d) Ultrametricize the resulting tree using PATHd8 with the dated family- and higher level calibration
points given by the Timetree project

2. Extract a tree for every level of the EMP ontologies out of the EMP timetree,

3. Coarse-grain each tree into distributions of OPS using the smallest number of slices which gives as
many or more OPS as there are internal nodes,

4. Optimize the BD, BDI, and BDH models and find the MLE of parameters b, d, η, α, and β,

(a) The log-likelihood Equation 2.46 is given by the sum of the logarithm of the OPS probabilities
φ

(k)
f (t, s),
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Figure 2.9: Distribution of eGOF p-values appearing in Table 2.1. Note that the BDH model passes the
eGOF for 41% of all trees. The orange line indicates the threshold above which the eGOF fails with 95%
confidence.

(b) The OPS probabilities are the Taylor coefficients of the OPSGF Φf (y, t, s) given by Equation 2.36
which we obtain by taking its FFT,

(c) To evaluate the FFT we need the value of Φf (y, t, s) at a large number of set points y in the
complex plain, and by extension of the generating function Ut(z) of the stochastic process at a
large number of points z,

(d) To evaluate Ut(z) at a single point z we solve Equation 2.27 numerically,

5. Do model comparison between BD, BDI, and BDH using the LRT,

6. Perform the eGOF on the best model.

2.6 Results

2.6.1 Inference on EMP

We performed ML estimation using the BDH model and report parameter estimates and eGOF for all trees
up to level 4 of the EMP environmental ontologies (ENVO). The for the parameter estimates and eGOF
p-values are shown in Table 2.1. We also report the results up to level 3 of the EMP ontologies (EMPO) and
results are shown in Table 2.2. Of interest is that the BDH model passes the eGOF for roughly 50% of the
ENVO trees, and 41% of the EMPO trees. Passing the eGOF suggests that those trees are typical of trees
generated by the BDH model. The distribution of eGOF p-values is shown in Figure 2.9. Figure 2.10 shows
the distribution of the ratio of MLE for the birth rate b over the innovation rate η appearing in Table 2.1.
Most of the weight of the distribution lie left of the value b∗/η∗ = 0.1 which indicates that slow gradual
speciation occurs an order of magnitude less often than fast bursty speciation. In fact it is less than one of
order of magnitude less in 85% of the cases. Figure 2.11 shows the distribution of the MLE for the death,
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ENVO level 1 ENVO level 2 ENVO level 3 ENVO level 4 b∗ d∗ η∗ α∗ β∗ eGOF
aquatic 0.01 0.00 0.10 24.8 1.00 1.0

freshwater 0.01 0.0 0.16 24.3 1.20 1.0
lake 0.01 0.00 0.25 19.8 1.31 0.92*

large lake 0.04 0.02 0.99 7.73 1.68 0.84*
small lake 0.01 0.00 0.27 19.4 1.34 0.81*

river 0.02 0.00 0.43 12.6 1.39 0.31*
large river 0.03 0.0 0.83 7.77 1.46 1.0
small river 0.04 0.0 0.61 10.8 1.52 1.0

unspecified 0.03 1.88 0.26 17.5 1.23 0.86*
marine 0.01 0.01 0.17 18.2 1.1 0.86*

benthic 0.03 0.45 0.37 16.4 1.39 0.89*
reef 0.00 5.03 5.6 1.77 1.9 0.94*

unspecified 0.03 0.41 0.375 16.0 1.38 1.0
estuarine 0.14 0.00 4.14 3.03 2.1 0.02*
marginal sea 0.02 0.00 3.51 2.95 1.87 0.86*
pelagic 0.03 5.38 0.92 10.6 1.72 0.0*
unspecified 0.02 0.00 0.22 14.0 1.12 0.08*

unspecified 0.02 0.00 0.84 4.58 1.35 1.0
terrestrial 0.01 0.00 0.10 23.9 0.98 1.0

anthropogenic 0.0 0.0 0.14 14.8 0.945 0.97
cropland 0.0134 0.0 0.292 23.1 1.46 0.82*
dense settlement 0.01 0.01 0.225 12.0 1.06 1.0

urban 0.0 0.0 0.251 8.02 0.96 1.0
unspecified 0.05 0.00 1.89 4.08 1.68 1.0

rangeland 0.05 0.0 0.75 6.19 1.37 1.0
village 0.04 0.00 2.27 3.07 1.59 1.0
unspecified 0.00 7.80 1.82 8.89 2.13 0.01*

desert 0.08 0.00 1.42 5.65 1.58 1.0
polar 0.00 3.14 2.7 3.2 1.64 0.98
unspecified 0.09 0.00 1.69 5.24 1.65 0.9*

forest 0.02 0.00 0.38 8.75 1.18 1.0
broadleaf 0.02 0.0 0.52 5.6 1.19 1.0
coniferous 0.19 2.78 1.4 7.56 1.78 1.0

unspecified 0.03 1.74 2.37 4.25 1.73 0.21*
temperate 0.00 3.23 2.39 4.48 1.78 0.47*
tropical 0.176 7.98 1.79 7.74 1.95 0.09*

mixed 0.06 0.00 1.4 4.2 1.52 1.0
temperate 0.12 3.26 1.98 4.84 1.66 0.12*
unspecified 0.04 0.00 0.76 4.59 1.44 0.74*

unspecified 0.05 0.03 0.757 9.64 1.54 0.58*
grassland 0.04 0.06 0.73 9.56 1.5 0.17*

montane 0.11 2.22 0.96 8.08 1.51 1.0
temperate 0.16 1.08 1.7 5.41 1.69 1.0
tropical 0.18 2.04 2.87 4.91 2.07 0.41*
unspecified 0.06 0.00 1.16 6.59 1.57 0.97

mangrove 0.04 0.04 2.92 5.76 2.89 0.75*
shrubland 0.03 0.00 0.46 7.91 1.24 1.0

montane 0.18 4.57 1.97 6.43 1.88 0.05*
subtropical 0.05 0.01 0.80 3.67 1.24 1.0

mediterranean 0.05 0.00 0.79 4.07 1.29 1.0
tropical 0.11 0.00 2.23 5.62 1.96 0.95*
unspecified 0.02 0.00 0.61 6.43 1.26 1.0

tundra 0.04 1.19 0.41 15.5 1.42 0.82*
woodland subtropical mediterranean 0.0 1.53 0.31 6.62 1.16 1.0

Table 2.1: Parameter estimates and p-value of the eGOF for the BDH model for biomes up to the fourth
level of ENVO. The BDH model passes the GOF for about 50% of trees.
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EMPO level 1 EMPO level 2 EMPO level 3 b∗ d∗ η∗ α∗ β∗ eGOF
Control 0.05 0.00 0.85 3.45 1.26 1.0

Negative Sterile water blank 0.02 0.00 0.53 4.51 1.23 0.87*
Positive Mock community 0.00 0.00 9.87 1.03 1.84 0.83∗

Free-living 0.01 0.00 0.09 13.0 0.54 1.0
Non-saline 0.01 0.00 0.10 12.3 0.58 0.98

Aerosol non-saline 0.04 0.00 0.35 5.17 1.16 1.0
Sediment non-saline 0.02 0.00 0.37 20.2 1.6 1.0
Soil non-saline 0.01 0.00 0.15 12.5 0.68 0.58*
Surface non-saline 0.02 1.1 0.55 10.5 1.35 0.73*
Water non-saline 0.02 1.5 0.15 21.9 1.04 0.90*

Saline 0.01 0.0 0.24 12.9 0.99 0.68*
Hypersaline saline 0.00 0.00 2.52 6.8 2.96 1.0
Sediment saline 0.02 0.00 0.28 14.9 1.15 0.95*
Surface saline 0.04 1.06 0.92 8.78 1.62 0.56*
Water saline 0.10 2.46 0.58 13.0 1.56 0.88*

Host-associated 0.01 0.0 0.14 10.1 0.70 1.0
Animal 0.01 0.0 0.21 6.22 0.87 1.0

Animal corpus 0.22 3.59 2.4 3.68 1.69 0.89*
Animal distal gut 0.02 0.00 0.35 5.31 0.98 1.0
Animal proximal gut 0.29 3.33 1.72 5.61 1.62 1.0
Animal secretion 0.03 0.00 0.78 4.29 1.26 1.0
Animal surface 0.02 0.00 0.30 5.44 1.03 1.0

Plant 0.02 0.60 0.28 21.8 1.31 1.0
Plant corpus 0.04 0.00 3.53 2.99 1.93 0.96
Plant rhizosphere 0.029 0.0 0.50 14.5 1.49 0.64*
Plant surface 0.15 6.38 0.14 44.4 1.31 0.83*

Table 2.2: Parameter estimates and p-value of the eGOF for the BDH model for biomes up to the fourth
level of EMPO. The BDH model passes the GOF for about 46% of trees.

Figure 2.10: Distribution of ML estimates of the ratio b/η appearing in Table 2.1 between the death rate and
the innovation rate for ENVO.
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Figure 2.11: Distribution of ML estimates of the death rate d.

Q0.5 Q0.75 Q0.90 Q0.95 Q0.99

mode (α = 4.6, β = 1.6) 4 8 17 28 83
medians (α = 7.3, β = 1.5) 6 13 29 49 156

Table 2.3: Quantiles of the beta-geometric distribution at the mode and medians of the MLE distribution
appearing in Table 2.3

or extinction rate d appearing in Table 2.1. While the distribution shows a wide range of values for the
estimates, a small majority of trees, about 57% of them, exhibit a death rate that is effectively 0 (less than
10−3). Looking at Figure 2.12 which shows the MLE for d vs the eGOF p-value we see that there is a strong
concentration of fits failing the eGOF when d∗ is close to 0. We believe this to be partially artifactual and a
result of bad fits and possibly related to the the phenomena of 0 inflated estimates for the extinction rate
when inferring using extant phylogenies[100]. Finally Figure 2.15 shows the distribution of ML estimates for
the shape parameter β vs α. The orange lines intersect in the middle of the modal bin of the distribution
at {α, β} ≈ {4.6, 1.6}. The purple lines indicate the marginal medians of α∗ and β∗ where medianα∗ = 7.3,
and medianβ∗ = 1.5. The 25% and 75% percentiles are 25%β∗ = 1.3, and 75%β∗ = 1.7 Parameters α and β

control the shape of the burst size distribution of fast speciation events where a single lineage quickly speciate
into k lineages, i.e. A → kA lineages. Their numerical value is hard to interpret as is. To give an idea of
their meaning, let us consider the quantiles of the distribution they represent, namely the quantiles of the
beta-geometric distribution. From Equation 2.22 we can write the quantile Qp implicitly as

Qp∑
k=1

B(α+ k − 1, β + 1)
B(α, β) = p. (2.76)

Table 2.3 shows the quantiles of the beta-geometric distribution with α and β poised at the mode of the MLE
distribution α = 3.7 and β = 1.4 and the marginal medians α = 6.0 and β = 1.5. They indicate that in 1% of
fast bursty speciation events lineages can quickly diversify into around 100 or more new lineages. Now for
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Figure 2.12: ML estimates for the death rate d as a function of the eGOF p-value. The orange line shows
the 0.95 threshold.

Figure 2.13: Distribution of ML estimates of the shape parameter α of the burst size distribution. The
orange line is poised a medianα∗ = 7.3
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Figure 2.14: Distribution of ML estimates of the shape parameter β of the burst size distribution. The
orange line is poised at medianβ∗ = 1.5

Figure 2.15: Distribution of ML estimates of the parameter β vs α appearing in Table 2.1. The orange lines
intersect in the middle of the modal bin of the distribution at {α, β} ≈ {4.6, 1.6}. The purple lines indicate
the marginal medians of α∗ and β∗ where medianα∗ = 7.3, and medianβ∗ = 1.5.
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Q0.5 Q0.75 Q0.90 Q0.95 Q0.99

aquatic (α = 7.2, β = 0.5) 21 105 689 2775 69538
terrestrial (α = 6.9, β = 0.5) 21 106 724 3000 80243

Table 2.4: Quantiles of the beta-geometric distribution at the mode and medians of the MLE distribution at
ENVO level 1

something a bit more dramatic, let us look at the quantiles of the beta-geometric poised at the ML estimates
of the parameters of the BDH model for the two trees at ENVO level 1, namely the aquatic and terrestrial
trees. Those quantiles are reported in Table 2.4. We believe it is highly likely that those values, especially for
the 95% and 99% quantiles, are spurious and do not reflect empirical reality. Even though subtrees of this
size exist in a few of the subtree size distribution, meaning that bursts of this size within those subtrees are
statistically allowed to occur, the frequency of those subtrees across those subtree size distributions is far
from 1 in 20 and 1 in 100. This discrepancy is likely a manifestation of the fact that all models are wrong.
Indeed the dramatic quantiles represent the weight of the ML distribution far in the tail. Yet we do not
observe any subtree, and therefore no burst, that far in the empirical tail because it is likely that there is a
cutoff imposed by nature which prevent such extreme events of fast diversification and the BDH model does
not include any such mechanism, e.g. an exponential cutoff on the burst size distribution.

2.7 Discussion

We have introduced a new methodology to interpret what diversity in environmental sequence data can tell us
about the ecological and evolutionary processes that shaped it. The key theoretical step in our new method
is to recognize that faster diversification processes which appear intermittently and last only for a short time
still leave a signature in imperfectly reconstructed phylogenies. This signature persists even when the quality
and length of our sequence data and consequent resolution of the phylogeny is relatively low compared to the
timescale of the processes.

Combining this realization with existing methods for inferring slower gradual processes from phylogenies
we were able to quantify the balance of fast and slow processes, the so called tempo of evolution, and the
parameter values that best describe the structure and distribution of burst sizes and therefore the mode of
evolution.

Of note are also three technical advances without which we would be unable to fully leverage our theoretical
approach. Firstly, the coarse-graining of trees introduces a new way of extracting empirical observables,
the subtree size distribution across slices, which sidesteps the issue of poorly resolved and low resolution
trees. Secondly, our generating function approach combined with the numerical complex integration step
allows us to extract exact probabilities out of an infinite dimensional model. This is something methods
which use perturbation theory or Markov matrix exponentiation are unable to achieve. Third and finally,
our eGOF can confidently tell us whether empirical trees are typical or not of the model we use, in other
words whether the model is sufficient to explain empirical features of coarse-grained trees. As far as we know
current macroecological lineage based inference methods do not easily lend themselves to this kind of test
because of the combinatorially difficult task of exploring the space of trees in an efficient manner.

Applying this framework to a large dataset encompassing heterogeneous habitats are stark: we almost
always need these heterogeneous faster processes to complement gradual diversification in order to explain
these data, and the parameters that best explain the observed fast heterogeneous structure of evolutionary
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trees are surprisingly universal across studies and environmental context. Indeed the tempo is such that
fast diversification happens almost always an order of magnitude more often than slow diversification, and
the burst sizes distribution with parameter centered around α ∼ 7 and β ∼ 1.5 indicates that the mode of
diversification is exceedingly bursty.

In other words, our results indicate that one of the most salient feature of microbiomes is their remarkable
and dramatic history of large and fast diversification events which happen again and again over several
timescales all throughout the tree of life and across multiple environments. The sheer amount of fast
diversification events and the number of new lineages they engender suggests that the number of niches,
discovered or constructed through the ecological evolution of their microbes as they innovate, enter new
environment, etc., must be just as dramatic. This loops back to the debate about the dimensionality of
niche space[101] and whether it is bounded due to diversity dependent diversification processes[102], or
unbounded[103] in line with a more ecologically informed understanding of diversification that goes beyond
simple ideas of competitive pressure and towards openness of evolving species communities. Although we
cannot yet explain why and the precise mechanisms that underly it, we suggests that the dimensionality
of microbial niche space is marked and generated by a history of striking radiation events, e.g. following
metabolic, ecological, and morphological innovations with putatively unbounded number of niche dimensions,
and aligns with Gould and Eldredge’s hypothesis of punctuated equilibrium rather than that of phyletic
gradualism[52].

2.8 Conclusion

These results raise many questions, and open a number of doors for future investigation. Perhaps the primary
open question is: what biological changes cause the bursts we observe in empirical trees? Are these genuinely
due to innovations, where an adaptation opens the door to many further adaptations [67], [68], [104], [105]?
They could also be the result of exploration of new habitats, disturbance opening up niche space to be
invaded [106], [107], or something else entirely. Our current analysis cannot answer these questions clearly,
but the evidence does clearly show that an explanation is necessary. Second, we have shown that a class of
distinct fast processes all map on to the same observable phenomena at coarse temporal resolutions through a
combination of their parameters. This is a quantitative example of a long-discussed idea in ecology that only a
handful of parameters survive to describe phenomena at larger or longer scale. The assumption is inherent in
neutral models, but also in other, simplified models of macroecological patterns [108]. Our approach can form
the starting point of quantitatively understanding which parameters and processes ‘upscale’, and which do
not[88]. Finally, why do we see such clearly convergent and universal patterns across divergent habitat types?
The ecological and evolutionary constraints leading to the patterns we’ve seen deserve a fuller explanation.
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Chapter 3

Unsupervised Discovery of Niche
Signals and Microbial Units

3.1 Introduction

As we have seen in the previous chapter the pervasive burstiness of microbial phylogenies and the wealth
of lineages it generates suggest the presence of a vast hierarchy of niches within which microbial diversify
distributes itself. This hierarchy should leave a signature somewhere in the structure of a microbial community.
To peak at this signature we need to zoom in to the mesoscopic scale and look at the way microbial abundance
responses partition themselves across environmental gradients. By abundance responses we mean the numerical
values by which the total abundance of a lineages split into the abundances of their daughter lineages. This
response is therefore a proportion between 0 and 1 which changes or stays the same in different environmental
conditions and for different lineages. If a lineage is completely filtered away, say, because of the presence of
extreme conditions in a given environment, then you would expect the proportion to fall to 0. If it is well
adapted, then you would expect that it will maintain a non-zero response.

Indeed, following repeated downstream events of diversification we would expect that there is a similar
downstream hierarchical partitioning of abundance responses across the multiple environments spanned by
such events together with potential reorganization of abundances within the standing diversity. One of our
core assumption is therefore that if this scenario holds, then there must be signatures of it left in patterns of
current day abundances.

This recursive partitioning of abundances gives us a natural way to define ecological microbial units. At
one extreme, two sister clades for which one is present in only a handful of environments and absent in
others, and vis-versa, serve as the prototypical ecological microbial unit. The response is an indicator that
moves in tandem with its environment; those two sister clades ‘discover’ an environmental niche and the
niche correlates with their presence or absence. At an intermediate level, two sister clades that respond in a
coherent way across several environments, say by splitting their parent’s abundance in three different ways,
also acts as indicator not just of a single environment but of several. Maybe in the presence of high salinity
the response is 0.3, in medium salinity the response is 0.5, i.e. they split evenly their parent’s abundance,
and at low salinity the response is 0.9. In other words their relative abundance ‘discovers’ an environmental
gradient and thus the potential presence of two niches.

All this to say that we assume that the way the intensity of a response, namely its statistically inferred
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value, clusters across various environments serve as an indicator of the presence of different ecological niches
within different clades. Given that deeper clades can manifest this type of clustering and not just individual
taxa and that we effectively set out to discover all of these clustered responses, we will in effect, if we are
successful, find a representation of the repeated entry or construction of niches at all levels within a given
phylogenetic tree.

Suppose now that we are given a set of microbiome samples and that we do not know a priori neither
which set of, or how many niches are presented in each sample nor do we know how those niches break apart
into smaller more specialized niches. We therefore find ourselves faced with a difficult hierarchical clustering
problem. Indeed we do not and cannot assume that we know and have measured a list of environmental
features like temperature, salinity, acidity, etc., which exhaustively covers all dimensions of potential niches
across all microbiome samples. This problem is thus the purview of unsupervised machine learning methods
which is, to make a reductive comparison, a generalization of traditional ordination methods like PCA or
NMDS methods. One of the main advantage of unsupervised learning methods over ordination methods is
that we will explicitly write and invert a probabilistic generative model rather than use ad-hoc clustering
methods with arbitrarily chosen dissimilarity measures or distance metrics.

We take inspiration from the field of computational linguistic and more precisely probabilistic topic
modeling, a machine learning approach which discovers a mixture of topics within a corpus of documents
automatically[109]–[111]. Probabilistic topic modeling seek to find latent topics which may have generated
the set of words in a document across a corpus of documents. Topics are latent and are represented by
an unknown distribution over a dictionary of words, usually modeled by a multinomial distribution, and
words are a single draw out of the multinomial distribution of their associated topic. This is what is called a
‘bag-of-word’ model whereby the order and syntax of the language is ignored and only the frequency of words
matters. Topics are characterized by the set of probabilities that enter as parameters of their respective
multinomial distribution and the distribution over those parameters which models the uncertainty in each
topic is given by the conjugate prior of the multinomial distribution, namely a Dirichlet distribution. The
unsupervised learning approach discovers automatically the number of topics, the distribution over words of
a dictionary of each topics, and the topic associated with each word. In other words, we seek to find the
distribution of topics, itself a distribution over distributions of words in a dictionary.

The correspondence goes as follow: each microbiome sample is a document constituted of a set of words.
Each word is given by a couple of relative abundances between two sister clades. We therefore think of words
as an abundance couple (kl, kr) taken to be a binomial draw with k = k1 + k2 where k1 represent the relative
abundance of one sister clade and k2 the relative abundance of the other sister clade. Topics are binomial
proportions φ, which we call the clade responses and the distribution characterizing the parameter of the
response φ will be modeled using a beta distribution, namely the conjugate prior of the binomial distribution.
A topic is therefore given by a binomial distribution over all binomial draws and the dictionary is the set
of possible draws (k1, k2). To make a story short, each microbiome sample is a document generated by a
mixture of topics, the proportion φ, and together they generate the set of words (k1, k1) across the clades
of the phylogeny. In contrast to traditional topic modeling, each document has the same number of words,
namely the number of clades in the phylogeny.

Now we go one step further. We do not assume that the mixture of topics in a microbiome sample is a
flat collection of response φ. Instead we assume a hierarchy of topics in the sense that topics further separate
into subtopics, themselves separating into sub-subtopic, and so on. Our probabilistic generative model will
therefore seek to infer a hierarchy of topics. To do so we will need to use a further generalization of traditional
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latent topic modeling called a nested Hierarchical Dirichlet process (nhDP). As hinted above and explained
in the next section we will adapt this model to conventional microbial ecology datasets and in doing so settle
on a slight specialization of the nhDP which we will call the path-limited nhDP, or pl-nhDP. Models of this
kind and their generalizations have a long history within the field of computational linguistics, especially e.g.
the work of Blei et al.[112]–[116]. Our method rely on a model in between the nested CRP [115] and the
hierarchical nested Dirichlet processes [116]. Strong similarities also exist with the work of Ghahramani et
al.[117] where ours use a much simpler transition kernel when navigating up the hierarchy of topics.

3.2 Methods

3.2.1 From Abundance Tables to Phylogenetically Informed Abundance Tables

Microbial ecology datasets are traditionally comprised of two things. On one hand we have a phylogenetic tree
which spans the set of all microbial ‘species”, usually imperfectly defined as OTUs or oligotypes which are
cluster or component of a mixture of sequences in genetic space, found across all microbiome samples. On the
other hand we have an abundance table for each of those species across samples (see Figure 3.1). Highlighted
in pink on the figure are two clades with their respective sister clades. The proportion with which relative
abundances of two sister clades split their parent’s total abundance is what we called the clade response.
Take for example the clade highlighted at the bottom and let’s focus on sample Z0221. The top sister clade
has abundance 2072 + 2 + 1289 = 3363 while the bottom sister clade has abundance 788 + 2801 = 3589. This
constitute what we called a word, or abundance split, given by the couple {3363, 3589}. Together they split
their parent’s total abundance 3363 + 3589 = 6952. One can thus say (in a ML context) that the response is
approximately 3363/6952 ≈ 0.48. Indeed, rather than the direct abundances at the level of taxa as shown
on the right in Figure 3.1), we can instead use the set of abundances of sister clades splitting their parent’s
abundance. We will call this the phylogenetically transformed abundance table, or phylogenetic abundance
table for short. One can think of this table as decomposing taxa level abundances into phylogenetic contrasts.

3.2.2 Probabilistic Generative Modeling

We can use a product of binomials to write a very simplistic model which generate the phylogenetic abundance
table across samples and microbial ‘species’. This model takes the following form:

P ({(ksi1 , ksi2)}s∈S,i∈I | {φsi}s∈S,i∈I) =
∏
s∈S

∏
i∈I

P (ksi1 |nsi, φsi),

=
∏
s∈S

∏
i∈I

(
ksi
ksi1

)
φ
ksi1
si (1− φsi)ksi2 ,

(3.1)

where S is the set of microbial samples, I is the set of internal nodes of the phylogenetic tree, i1 and i2

are respectively the two sister clades of clade i, ksi1 and ksi2 their respective abundances, the abundance
of the parent clade ksi = ksi1 + ksi2 , and φsi is the response of clade i in sample s. This model is highly
parametrized, i.e. #parameters= |S| × |I|. One could simply set every φsi at their MLE φ∗si = ksi1/ksi but
this model would be the least parsimonious model possible, i.e. with as many parameters as there are entries
in the phylogenetic abundance table. This would be completely uninformative as to which clades in which
samples respond coherently or not. This is the equivalent of ascribing a single topic containing a unique
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Figure 3.1: Top Cartoon of a traditional microbial ecology dataset where columns represent abundances in a
sample across a species and rows represent abundances across samples of a given microbial species. Bottom
More concretely, in actual datasets abundances are collected into a table. We highlighted in pink two parent
clades and their respective sister clades which split the abundances of their parent. The proportion of this
split is what we call the clade response.
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word to every single word in a corpus of documents. There are two simple potential extensions to this model
whereby we assume clustering of samples or clustering of clades. In the following we will only show the first
one given that the second one is simply obtained by interchanging S ↔ I everywhere.

Probabilistic Generative Model of Sample-Wise Clusterings

In this model we parametrize a given sample s by a vector of responses ~φs = {φi}s and introduce clusters in
the space of those (high-dimensional) vectors. This vector serves as the phylogenetic ‘fingerprint’ of a sample.
Let S = |S| be the total number of samples and π[S] a partition over samples. Each cluster λ ∈ π[S] now has
therefore an associated vector ~φλ containing a response for each clade, i.e. ~φλ = {φλi}i∈I . Such a model can
therefore be written

P ({ksi}s,i | π[S], {~φλ}λ∈π[S]
) =

∏
λ∈π[S]

∏
s∈λ

∏
i∈I

(
ksi
ksi1

)
φ
ksi1
λi (1− φλi)ksi2 ,

=
∏

λ∈π[S]

[∏
i∈I

φ

∑
s∈λ

ksi1
λi (1− φλi)

∑
s∈λ

ksi2

][∏
s∈λ

∏
i∈I

(
ksi
ksi1

)] (3.2)

Even though we reduced the number of parameter to |π[S]| vectors of |I| responses, we are left with finding the
particular partition π[S] which best describes the set of abundances in the phylogenetic abundance table across
samples. Even though we could in theory proceed with model selection, the number of partitions of a set [S]
is given by the Bell number BS which has the unfortunate growth rate BS ∼ O(SS), i.e. a super-exponential
growth. To give an idea of this kind of growth, B4 = 15, B10 = 115975, and B40 = 1.6 × 1035. This
combinatorial explosion in the number of possible partition makes an approach using naive model selection
completely impractical. The picture would be even more dire if we decided to partition clades rather than
samples given that phylogenetic trees usually have many more clades than there are samples in the dataset.

This is where the use of nonparametric generative models can help. More specifically the use of the
nonparametric prior over partition called the Dirichlet Process (DP)[118], and the closely related and simpler
Chinese Restaurant Process (CRP)[119]. The DP is the infinite dimensional generalization of the Dirichlet
distribution, namely a distribution over distributions of arbitrary dimensions, and the CRP, which is a
marginalized version of the DP and in particular arises when using conjugate priors, provides a way to
regularize the space over partitions. This regularization leads to a natural way to explore the space of
partitions and lends itself to a simple sampling scheme using MCMC with Gibbs sampling. Given that the
binomial distribution has a simple conjugate prior, the beta distribution, we can thus use the simpler CRP in
the following. The CRP is a prior over partitions which can be written

P (π[S]|α) = αK

α(S)

∏
λ∈π[S]

(|λ| − 1)!, (3.3)

where the Pochhammer symbol, or rising factorial, α(S) = α(α+ 1) . . . (α+ S − 1) = Γ(α+ S)/Γ(α). One
important property of the CRP is that on average the number of clusters grows like α logS. This is why we
say that it regularizes the space of partitions. Even though it can grow unboundedly with the number of
data points, hence the label ‘nonparametric’, the number of parameters remains on average logarithmically
bounded.

This expression can be understood simply through the metaphor of seat assignments used at certain
Chinese restaurants whereby as customers pour in, the probability of sitting at a table that is already occupied
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is proportional to the number of customers already sitting at that table, and the probability of sitting at an
empty table is proportional to the concentration parameter α ≥ 0. The greater the concentration parameter
α, the more likely new tables will be opened. In the opposite limit α→ 0 everyone ends up sitting at the
same table.

Concretely, when the first customer arrives, they are immediately seated at an empty table. When the
second customer arrives, they are seated at the same table as the first customer with probability 1/(1 + α)
and at a new empty table with probability α/(1 + α). There are thus two possible scenarios with two
customers. Either both are seated at the same table, which we denote by the partition π[2] = {λ1} = {{1, 2}},
or both are seated at their own table which we denote by the partition π[2] = {λ1, λ2} = {{1}, {2}}. Given
a restaurant where S customers are seated at K tables with arrangement π[S] = {λ1, . . . , λK}, then the
next customer to arrive will be seater at table 1 with probability |λ1|/(S + α), at table 2 with probability
|λ2|/(S + α) and so on and with probability α/(S + α) they will be seated at an empty table. Notice that
for a table λ with |λ| customer, the numerator of the probability of reaching this number is always equal
to α × 1 × 2 × . . . × (|λ| − 1) = α(|λ| − 1)! regardless of the order of customer arrival at the other tables.
This is the case for every table λ ∈ π[S]. This takes care of the numerator in Equation 3.3. Similarly, for
the restaurant to reach a state with 1 customers, the assignment probability was made with proportionality
factor 1/α. To reach a state with 2 customers from one with 1 customer, all possible assignments are made
with a proportionality factor 1/(1 + α). To reach a state with S customers from one with S − 1 customers all
potential assignments were made with a proportionality factor 1/(S − 1 + α). To reach a restaurant with S

customers starting with no customer we therefore have that the probability of this state is proportional to
1/α× 1/(1 + α)× . . .× 1/(S − 1 + α). This takes care of the denominator in Equation 3.3. Notice that the
final probability is therefore independent of the precise order with which seats were assigned at tables. There
is no memory of the precise construction process of the ordering, but the probability of the next draw is
correlated with the current state. In other words, draws out of a CRP are not independent, but the lake of
memory of the CRP makes series of draws exchangeable sequences.

We are almost at the point where we can write a full generative model for the phylogenetic abundance table.
We have the data likelihood which gives the probability of observing abundances given a set of responses,
we have the probability of observing a given partitioning of responses across samples given the clustering
parameter α, and now all that is missing is the probability of given response values in different sample clusters
and across clades. To wit, the CRP gives us a nonparametric prior over over π[S], we simply need a prior over
~φλ. Given that our data likelihood is a product of binomial, it is natural to use the uninformative Jeffreys
prior of the binomial distribution, namely the beta distribution with shape parameters identically 1/2. To
wit,

P (~φλ) =
∏
i∈I

Beta(φλi | β, β) =
∏
i∈I

φβ−1
λi (1− φλi)β−1

B(β, β) (3.4)

where β = 1/2 and the beta function B(x, y) = Γ(x)Γ(y)/Γ(x + y). Using the CRP we can now write a
probabilistic generative model with flat partitioning of samples

P ({ksi}S,I , π[S], {~φλ}λ∈π[S] |α, β) = α|π[S]|

α(S)

∏
λ∈π[S]

(|λ| − 1)!
∏
i∈I

φβ−1
λi (1− φλi)β−1

B(β, β)
∏
s∈λ

(
ksi
ksi1

)
φ
ksi1
λi (1−φλi)ksi2 .

(3.5)
Given that the Jeffreys prior of the binomial distribution is also its conjugate prior we can integrate out ~φλ
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and find the simpler generative model and its posterior distribution over π[S]

P ({ksi}S,I , π[S] |α, β) = α|π[S]|

α(S)

∏
λ∈π[S]

(|λ| − 1)!
[∏
i∈I

B(β +
∑
s∈λ ksi1 , β +

∑
s∈λ ksi2)

B(β, β)

][∏
s∈λ

∏
i∈I

(
nsi
ksi1

)]
,

⇒ P (π[S] |{ksi}S,I , α, β) ∝ α|π[S]|

α(S)

∏
λ∈π[S]

(|λ| − 1)!
∏
i∈I

B(β +
∑
s∈λ ksi1 , β +

∑
s∈λ ksi2)

B(β, β) .

(3.6)

From this expression we can devise a simple Gibbs sampler which explores the posterior distribution over
the space of partitions π[S]. We start with a random partition π over samples s = 1, . . . , S. Let π−σ be the
current partition with sample σ removed. We want to reassign σ to any one of the cluster already present in
π−σ or to its own individual cluster and in doing reach a new partition π′ which can be the same as π or
slightly different from it in that σ might belong to the same cluster or a different cluster. If we reassign σ

to one of the current cluster c ∈ π−σ then the partition will change from π to π′ = π−σ − c+ c ∪ {σ} and
therefore |π′| = |π−σ| = K. If we reassign σ to its own new cluster then the partition will change from π to
π′ = π−σ + {σ} and therefore |π′| = |π−σ|+ 1 = K + 1. Let

Gλ,I =
∏
i∈I

B(β +
∑
s∈λ ksi1 , β +

∑
s∈λ ksi2)

B(β, β) .

The second line of Equation 3.6 therefore leads to the following probability for assignments,

P (π′|π−σ, {kσi, }I , {ksi, }S−σ,I) ∝



αK

α(S−1)

[
|c−1|!|c|
α+S−1 Gc+{σ},I

][ ∏
λ∈π−σ−c

(|λ|−1)!GλI

]
αK

α(S−1)

∏
λ∈π−σ

(|λ|−1)!GλI
, π′ = π−σ − c+ c ∪ {σ},

αK

α(S−1) [ α
α+S−1G{σ},I]

[ ∏
λ∈π−σ

(|λ|−1)!GλI

]
αK

α(S−1)

∏
λ∈π−σ

(|λ|−1)!GλI
, π′ = π−σ + {σ},

(3.7)
and after cancelling common factors

P (π′|π−σ, {kσi, }I , {ksi, }S−σ,I) ∝
{

|c|
α+S−1

Gc+{σ},I
Gc,I

, π′ = π−σ − c+ c ∪ {σ},
α

α+S−1G{σ},I , π′ = π−σ + {σ}
(3.8)

Then the algorithm proceeds by repeatedly removing a randomly chosen sample σ from the current state π
and reassigning it following Equation 3.8. Notice that this is nothing but the CRP described above augmented
by the evidence provided by the phylogenetic abundance table. This is in essence the Gibbs algorithm found
e.g. in [120] which at stationarity produces a chain over the a posteriori probability distribution of partitions
π[S], namely over clusterings of samples.

We can summaries this probabilistic generative model of sample-wise clustering in a compressed distribu-
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tional form

G ∼ DP
(
α
∏
i∈I

Beta(β, β)
)
,

~φs | G ∼ G, s ∈ S

{ksi1 , ksi2} | ksi, φsi ∼ Binomial(ksi1 , ksi2 | ksi, φsi), i ∈ I, s ∈ S.

(3.9)

It says that first we draw a distribution over vectors ~φ out of the DP. Then out of this distribution we
draw a vector ~φs for each sample s ∈ S. Finally given each ~φs we draw splits {ksi1 , ksi2} out of a binomial
distribution with parameter ksi = ksi1 + ksi2 and φsi for each clade i ∈ I in the phylogenetic abundance
table and across sample s ∈ S. The Gibbs algorithm described above inverts this model to recover G and
the assignments of ~φs to atoms φ in G. This is possible because the a posteriori probability of the DP is an
atomic distribution which is its own conjugate prior. The atoms in the posterior DP distribution are the
clusters at some set of values ~φλ together with a new atom at ~φnew ∼ Beta.

At the beginning of this section we mentioned that there is a converse generative model of flat partitions,
namely the one where we interchange S ↔ I everywhere. This clade-wise model would find partitions over
clades rather than samples and each cluster of this partition would be associated with a vector ~φi = {φis}s∈S
of responses across samples (the rows of the phylogenetic abundance table) for clade i. This lead us to
recognize the most cumbersome limitation of flat clustering models; there is nothing that guarantee that the
clusters of the sample-wise model and those of the clade-wise model are compatible, or commensurable in
that neither of them inform the other. Clustering of rows of the phylogenetic abundance table do not say
anything about clustering of columns of the phylogenetic abundance table.

Probabilistic Generative Model of Nested Hierarchical Clusterings

In the context of our phylogenetic abundance table, the above model works only to cluster samples together.
It informs us about which samples have the totality of their clades respond in similar ways within statistical
certainty offered by binomial distribution. One would thus expect that we can only learn about the strongest
niche signal; are there 2, 3, 4, or N niches which seem to lead to similar tree-wide responses and therefore
similar relative abundances throughout the phylogenetic abundance table?

But what if we have the following scenario. Imagine that there is an overarching gradient, or niche
dimension like temperature, along which there are two temperature niches t1 and t2. In niche t1 a subset
of clades x, y, and z respond with φt1x , φt1y and φt1z , and in niche t2 they respond instead with φt2x , φt2y and
φt2z . Then imagine there are sub-niches along a second dimension in niche space, say, salinity. At salinity
sub-niche s1 a particular clade α respond with φt1,s1α and in salinity sub-niche s2 with φt1,s2α . Imagine finally
that this scenario continues recursively. One can quickly see that the previous flat sample-wise model (nor
the clade-wise model for that matter) is completely incapable of capturing this more subtle hierarchy and we
are left seeking a more complicated, certainly hierarchical model to handle it. Indeed we were inferring flat
partitions of the form

{{A,B,D}, {C,F}, {E,G}, {H}},

but what we really need is to infer recursive partition, called partition refinements, of the form

{{{A,D}, B,C}, {{F,G}, {H}}.
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This recursive, hierarchical scheme we will represent as a tree, for example as shown in Figure 3.2.

Figure 3.2: Top Tree representation of the refinement {{A}, {{{F,D,B}, {G, I}, {H}, {J}}, {C}}, {E}}
Bottom Tree representation of the refinement {{{A}, {J}}, {{C,B}, {I}}, {{G}, {D}}, {{{F}, {E}}, {H}}}.
We collapsed degenerate refinements, i.e. given the top tree we should actually have {{{{A}}}} instead of
{A} and so on for the other elongated branches.

Let us recapitulate the initial setting. Suppose we are sampling various microbiomes. Each microbiome
sample represents a document with its words. The set of those words for a given sample/document s is the
set of abundance splits {ksi1 , ksi2}s,I across the clades of the phylogenetic abundance table for that sample.
Each word is understood to come from a topic which is characterized by a response φ that enters into the
binomial distribution over realizations of abundance splits. Therefore documents are generated by a pool of
latent topics, namely samples are generated by a pool of latent responses.

The purpose of the pl-nhDP model is to organize these topics, the responses, in a hierarchical way and
to generate the abundance splits found in the phylogenetic abundance table from those responses. To help
clarify the structure of our model consider Figure 3.3. In this structure there is one response sitting at
each node. Samples are associated with paths from the leaf of the hierarchy to the root of the hierarchy.
The nodes a sample path intersect creates the pool of responses that can generate the abundance splits
down the column of the phylogenetic table. Clades are associated with slices across the hierarchy and ‘cut’
the hierarchy in disjoints subtree which joined together cover all leaves. Clade slices select the particular
responses that will generate the abundance splits across rows of the phylogenetic table. If more than one
clade slice intersect a path, then all those clades will respond coherently for that sample. If more than one
sample path intersect a clade slice, then all those samples will respond coherently for that clade. If more
than once clade slices intersect more than one paths, then all those clades across those samples will respond
coherently. The pl-nhDP creates partitions that are commensurable across clades and across slices. This is
the most important feature of the pl-nhDP.

Here’s how we more precisely construct the pl-nhDP. First, we have a hierarchy of topics generated by a
nested CRP. A simple way to understand the nested CRP is to extend the original metaphor of the CRP by
the introduction of a recursive structure. Once a customer has been seated at a table and is done eating, they
aredirected to a different restaurant where they begin the CRP anew. The restaurant they are directed to
depends on which table they were seated at. This process produces a nested structure of restaurants where
each table in each restaurant points to another restaurant and so on. At each node of the hierarchy, namely a
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table in a given restaurant, is a particular dish that everyone at that table eats. This dish is the equivalent of
a topic given by a particular response φ. Let us translate this in more precise terms. The hierarchical tree

Figure 3.3: Top-left Hierarchy of topics. At each node of the hierarchy sits a response φ. Top-right Each
sample, or document, is represented by a path (in blue, orange, and green), namely its sample path, from a
leaf of the hierarchy to the root of the hierarchy and picks out a pool of potential responses which will be
used to generated the abundance splits along its column of the phylogenetic abundance table. Bottom-left
Each clade is represented by a slice (in black) across the hierarchy, namely its clade slice. The slice selects
which responses in particular will generate the abundance splits within one row of the phylogenetic table.
Bottom-right The pl-nhDP is the combination of the hierarchy, all sample paths, and all clade slices. For a
given clade in a given sample, its abundance split is generated by the response found at the intersection of
the clade slice with the sample path. If more than one clade slice intersect a path, then all those clades will
respond coherently for that sample. If more than one sample path intersect a clade slice, then all those
sample will respond coherently for that clade.

this process generates is an infinite multifurcating tree where at every node live individual Dirichlet processes.
Fortunately in a context with finite data a given realization of the posterior hierarchical tree will be finite.
We have thus

Gηl ∼ DP (αBeta(β, β)) , ηl ≥ 1l and l ≥ 0,
φ(ηl,ηl+1) | Gηl ∼ Gηl , ηl+1 ≥ 1

(3.10)

where ηl is a tree coordinate up to depth l. For example in the top tree in Figure 3.2 the leaf of sample J
would have coordinate η4 = (1, 2, 1, 4, 4). The symbol 1l represent the left-most (or top-most) coordinate
vector (1, 1, . . . , 1) of length l. We use once again the Jeffreys prior (β = 1/2) as the base distribution from
which to draw binomial parameters. The above specification stipulates that for each of the infinite number
of nodes in the hierarchical tree we draw a random distribution over responses 0 < φ < 1, and out of this

54



distribution we draw a response φ(ηl+1,ηl). Together, the set of all Gηl exhausts all available responses that
can generate a phylogenetic abundance table. This concludes the ‘nested Dirichlet processes’ part of our
generative model.

Each sample needs a pool of responses to generate its abundance splits down its column of the phylogenetic
abundance table. For each sample s we draw a path of Dirichlet processes sitting at nodes, the sample path,
from the root to one of the tip of the nested DP,

Gsl | Gηl ∼ lim
γ→0

DP (γGηl) l ≥ 0, s ∈ S. (3.11)

The γ → 0 limit of this hierarchical draw over all Gηl insures that each level l ≥ 0 we draw only one node.
The node drawn at level l specifies which Dirichlet process to draw from at level l + 1, e.g. if at level l we
draw G(ηl,4) out of Gηl , then at level l + 1 we will draw the next Dirichlet process in the path out of G(4,ηl).
This process of stepping forth by selecting only one node at each level produces the said sample path. In
other words at each level

Gsl = δφηs
l+1
.

Using this atomic limit we denote the random path drawn for sample s

ηs = (ηs1, . . . ηsl ).

This path is the precise trajectory of restaurant a customer ended up going through. This concludes the
‘path-limited’ part of our generative model.

Finally, we add an additional hierarchical component to our model in order to draw a random slice for
each individual clade, the clade slice. To do so we make use of stochastic switches sitting at each node ηl of
the hierarchical tree. For each switch we draw a stopping probability Qηl that determines the distribution
from which we will draw its state Uηl = 0 or 1. More precisely,

Qηl ∼ Beta(µ1, µ2),

U iηl |Qηl ∼ Bernouilli(Qηl), ηl ≥ i ∈ I,1l, l ≥
(3.12)

and the state of the root switch is always off so we always skip it. Then for each clade i within sample s we
select a slice intersection Hsi using the product of the states of switches from the root towards the leaves
along the sample path, to wit

Hsi | U i,Gs ∼
∑
l≥1

Gsl−1 U
i
ηs
l

l−1∏
m=1

(1− U iηs
l
),

=
∑
l≥1

δφsηl
U iηs

l

l−1∏
m=1

(1− U iηs
l
), s ∈ S.

(3.13)

Given that the state of the switch is either 1 or 0 notice how a clade selects only one node and its
binomial proportion, the response, along each sample path. The above construction gives rise to an infinite
tree-structured categorical distribution with probabilities along each sample path given by a Griffiths-Engen-
McCloskey (GEM) process with parameters µ1 and µ2 which we set to 1/2. This concludes the ‘hierarchical’
part of our generative model.
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Last but not least the data likelihood

ψsi | Hsi ∼ Hsi,

ksi1 , ksi2 | ksi, ψsi ∼ Binomial(nsi, ψsi), s ∈ S, i ∈ I
(3.14)

Figure 3.4 shows an example of the GEM process overlaid on top of the nCRP for a real dataset of zebrafish
gut microbiome samples. Figure 3.5 shows a subsample of clade slices inferred from the same dataset where
one can see the remarkable heterogeneity that the pl-nhDP can extract from real data. The pl-nhDP

Figure 3.4: Example of a sample path and two clade slices on a real pl-nhDP. In purple a path from root to
leaf which selects nodes throughout the hierarchical three generated using the nCRP. In gray and green the
stochastic switches of the GEM process. Gray switches are in state 0 and green switches in state 1. Notice
how a clade slice is made of a transversal set nodes in the state 1.

generative model gives for a given configuration the probability
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Figure 3.5: Example of the distribution of slices in a realization of the pl-nHDP from a real dataset of 45
zebrafish gut microbiome samples. Here only 6% (20) of the total number of slices (319) are shown. Already
we can see the flexibility and complexity captured by the pl-nhDP. The darker the slice coloring, the closer
its associated clade is to the root of the phylogenetic tree. This particular choice of slices in this figure is not
arbitrary. It represents one candidate set of putative ecological microbial units which we discover as
explained in the next section.
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where η are the nodes in the hierarchical tree, {ηs} the set of sample paths, {U i} the set of clade slices,
{π[Pη ]} the set of partitions in the nCRP, Pη the number of sample paths crossing node η, the partition
over paths crossing node η, {ksi1 , ksi2} the set of binomial draws for sample s and slice i in the phylogenetic
abundance table, si ∈ η the sample path and clade slice indices intersecting at η, and Sη and S>η the number
of slices at and above node η.

Using this expression we can find the probability of various types of moves. The first type of move consists
in first removing a clade slice U j (namely the set of its on-off stochastic switches) and all the abundance
splits {ksj1 , ksj2}s at that clade across samples s and then reinserting it somewhere else in the hierarchy.
Given a new position U j ,
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where S−jη means the number of slices at η when the slice j is removed from the hierarchy, U j
+ means the

set of nodes at which the stochastic switches are on, namely the nodes along the clade slice, and η < U j+ is
the set of nodes at which the stochastic switches are off, namely those nodes that sit below the clade slice
in the hierarchy. The second type of move consists in removing a sample path ηr and all abundance splits
{kri1 , kri2}i for this sample across all clades i from the hierarchy and then putting it back somewhere else.
Given a new sample path ηr,
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where ηrl is the l-th node along the sample path ηr and {πη}−r and P−rη which here mean the set of partition
in the hierarchy and the number of sample paths at node η when the sample path r is removed.

3.3 Discovery of Ecological Microbial Units

The discovery of the fundamental units of microbial diversity has changed substantially since the advent
of the genomic era, especially in the way it is increasingly understood to be fundamentally different from
the concept of species demarcation in eukaryotes[121], [122]. Our approach falls in line with previous work
on the way to delineate microbial units in term of their ecology[123] rather than the way they cluster in
genetic or genomic space. That is, namely, as ‘ecotypes’[124], [125]. Ecotypes are defined as populations of
organisms occupying the same ecological niche, and so we use what we call the ‘signal of a niche‘ provided by
the topology of the hierarchical tree as a baseline to discover what we call simply ‘ecological microbial units’.

With a maximum a posteriori probability (MAP) hierarchy in hand we are now ready to proceed with
the discovery of ecological microbial units. The set of nodes in the hierarchy parsimoniously exhausts
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the heterogeneity of responses necessary to generate the phylogenetic abundance table. It organizes this
heterogeneity in a hierarchical way where the closer one gets to the root of the hierarchical tree the stronger
the data supports associated structures and similarities of responses. Moving towards the leaves, the model
decomposes the dataset with increasing specificity and granularity. Many branches are spanned by multiple
nodes, and this multiplicity captures the diversity of quantitative responses for which samples along that
branch coherently respond the some factor.

Underlying the set of nodes in the hierarchy is the topology of the hierarchy itself, namely the set
multifurcations and collapsed branches obtained after forgetting the multiplicity of nodes along them. This
topology putatively corresponds to an exhaustive decomposition of the way grouping and subgrouping of
samples are associated with particular, often unmeasured environmental factors. Indeed as we will see in the
next section, clusters that emerge deep in the hierarchy can be sometimes associated with some important and
known, controlled factors, for example an experimental treatment, but this is not so for smaller sub-clusters
which might be associated with unspecified and uncontrolled factors. In other words, while the full hierarchy
and its nodes exhausts the heterogeneity of responses, its underlying topology exhausts the heterogeneity of
both known factors and unknown confounding factors. In this setting, the set of branches in the topology
that a clade slice touches acts as stand in for some set of factors to which it responds in some arbitrary but
coherent way.

If we accept the meaning of the topology and how clade slices interact with it, we can then ask what
are the most ‘important’ clade slices which together completely cover it. We say that a clade slice covers a
branch if one of its node sits along that branch. A clade slice can therefore cover several branches in the
topology. We expect that the more clade slices we consider, the more they cover the set of all branches. After
a certain number of clade is considered one would expect that the set of their slices completely covers the
topology. We call this a complete covering. Finding a complete covering is interesting because its set of
clades ‘senses’ the full set of known and confounding factors across all sampled microbiomes.

It is obvious that there is more than one set clades that can produce a complete coverings. If we are to
attempt to find one such covering we must do so in a way that is as biologically sound as it is optimal. There
are two ways to do so that we believe are more interesting than others. The first one is phylogenetically
informed and the other topologically informed. In the phylogenetically informed approach, we rank all clades
according to their distance to the root of the phylogenetic tree and therefore from the coarsest to the finest
taxonomic level. In the topologically informed approach we are instead interested in prioritizing clades
associated with slices that cut deeper in the topology of the hierarchical tree, and so we sort using the mean
root distance in the topology of the branches cut by the clade slice. In other words from clades that respond
more coherently on average to the underlying factors to those who respond with more granularity.

Then we proceed using a simple greedy approach. We add clade slices one by one to the covering following
either the phylogenetic of topological sorting, each time eliminating the new branches the newly added clade
slice covers. We also remain conservative whereby we skip clades slices that do not cover any new branches
that were not already covered. Once we have a complete covering we stop. The set of daughter clades of
the clades in the complete covering we take to be the ‘ecological microbial units’. We must use the daughter
clades because the heterogeneity of responses at one clade of the phylogenetic abundance table controls the
way the abundance splits between its two daughter clades. In other words we need the daughter clades in
order to see the response.

59



3.4 Results

3.4.1 Datasets

We use two datasets to showcase our method. The first one, the zebrafish gut dataset under diets with
different levels of zinc, serves as a test-bench. The second one, the TARA Oceans expedition dataset, we
hope will better highlight the power of our method.

Zebrafish Gut Microbiomes

The zebrafish dataset is constituted of two components: a completely bifurcated phylogenetic tree of 16S
OTUs rooted at the {Archea, Bacteria} node, and an abundance table of those OTUs as obtained from
the standard QIIME pipeline[36]. The dataset contains samples of gut microbiomes from 45 zebrafishes
under three different treatments[126]: 15 fishes were exposed to a standard lab diet control (LDC), 15 were
exposed to a defined diet with sufficient levels of zinc (DDC), and 15 where exposed to a defined diet with
deficient levels of zinc (CZMD). The abundance table contains 1091 OTUs across 45 samples and therefore
the phylogenetic abundance table contains 45× 1090 entries as abundance splits {ksi1 , ksi2}. To reduce the
size of the dataset we dropped all records for which ksi = ksi1 + ksi2 < 0.01× ks,root, namely for which the
abundance of the parent clade drops below 1% of the total abundance in the sample s. This reduces the
number of represented clades in the phylogenetic table from 1090 to 319. The final total number of abundance
splits represented in the phylogenetic abundance table was 5373.

We now apply the pl-nhDP to the zebrafish dataset. The inferred MAP hierarchical tree is shown in
Figure 3.6 with sample paths colored according to their associated treatment. One can see that almost all
samples under the LDC treatment cluster apart from the two other treatments. The clusters for the DDC
and CZMD treatments are a bit more mixed. The cluster where CZMD is mainly represented contains 10 of
the 15 CZMD samples, while the DDC samples are dispersed between two sub-clusters together containing 11
of the 15 DDC samples.

Then using the phylogenetically informed discovery of ecological microbial units we find a complete
covering of the topology of the hierarchical tree using only 20 clades out of the 319 clades present in the
phylogenetic table. We use the phylogenetically informed discovery rather than the topological one simply
because it needs fewer clades in the complete covering. We have already shown the set of clade slices with
this particular complete covering in Figure 3.5. If our covering uses 20 clade slices then we get 40 ecological
microbial units. This is an 8-fold reduction in the number of units compared to the use of collapsed OTUs.
We say collapsed because as we mentioned above in preparing this dataset we reduced the number of lineages
from 1090 to 319 by dropping abundance splits that fell below a 1% abundance threshold. Figure 3.7 shows
the same set of ecological microbial units but this time overlaid on the phylogeny.

TARA Oceans Expedition

The TARA Oceans dataset[19], [20] consists of microbiome samples collected from three different depths at
68 stations across every oceans (except the Arctic Ocean) for a total of 243 samples. These three depths
correspond to surface layer samples (SRF, n=113), deep chlorophyll maximum layer samples which for one
of them sat at the marine oxygen minimum (DCM, n=74+1), mesopelagic zone samples which sometimes
sat at the the marine oxygen minimum zone (MES, n=31 + 11), and finally marine epipelagic mixed layer
samples (MIX, n=13). We used the accompanying abundance table of 16S rDNA fragments derived from
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Figure 3.6: MAP hierarchy inferred from the pl-nhDP for the zebrafish dataset. Shown in yellow the
samples paths under the LDC treatment, in green samples paths under the DDC treatment, and in purple
the samples paths under the CZMD treatment. The black dots represent the nodes of the hierarchy at each
of which sits a response.
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Figure 3.7: Set of 40 putative ecological microbial units displayed on top of the phylogenetic tree for the
zebrafish gut microbiome dataset. Those ecological microbial units are the sister units, i.e. daughters of the
clades in the complete covering, and are shown in randomly chosen red-green contrasts. The covering rank is
indicated on the clades in the complete covering, i.e. at the parent node of the units.
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Illumina sequenced metagenomes (mitags)[127] which offer a powerful alternative to 16S OTUs. This table
includes 35649 mitags which themselves cover only 66 stations and 139 samples given that not all depths
were represented at some stations. For the phylogenetic tree we placed those mitags sequences using SEPP
on the 115 release of the SILVA SSU reference tree[128]. The final phylogenetic abundance table across all
139 samples comprises 1942479 abundance splits. To reduce the size of the dataset we drop all abundance
splits where ksi < 0.05× ks,root and retain only 67007 abundance splits.

We first apply the flat sample-wise probabilistic generative model presented in Section 3.2.2 to the TARA
Oceans dataset. Results are shown in Figure 3.8. The method infers five distinct clusters. The MES cluster
includes all MES samples plus one DCM sample at station 137 off the coast of Mexico and one MIX sample
at station 125 in the middle of the Pacific Ocean near the equator. The SRF cluster contains 47 out of the 63
SRF samples, and 13 out of the 42 DCM samples. The DCM cluster contains 25 out of the 42 DCM samples,
12 out of the 63 SRF sample, and 3 out of the 4 MIX samples. The CH cluster contains the SRF and DCM
samples from station 93 off the coast of Chile. Finally the SO cluster contains all SRF and DCM samples
in the Scotia sea and the South Ocean. While the stratification along depth of microbiome recapitulates
known results[129], two novel clusters (CH and SO) are detected by the method which indicate the presence
of two hypothetical microbiome that do not respond more strongly to some unknown factors than the depth
stratification.

Figure 3.8: Results of the flat sample-wise clustering of the phylogenetic abundance table from the TARA
Ocean dataset. Lozenges represent the stations from the the dataset. Two stations could not be correctly
labelled because of mistakes in the metadata. In a given lozenge, the top triangle represent the SRF sample,
the middle square the MIX/DCM sample, and the bottom triangle the MES sample. The five colors
represent 5 different clusters inferred by the method. The MES cluster in red contains all MES samples, the
SRF cluster in orange contains mostly SRF samples, the DCM cluster in purple contains mostly DCM
samples, the CH cluster in yellow includes a unique station on the coast of Chile, and the SO cluster in
green contains SRF and MIX/DCM samples in the Scotia Sea and the South Ocean.

We now apply the pl-nhDP to the TARA Oceans dataset. The resulting MAP hierarchy is shown in
Figure 3.9. Perhaps encouragingly we see once again the emergence of the stratification along depth between
SRF, DCM, and MES and the two geographically distinguished clusters CH and SO. The only difference
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with Figure 3.8 at the coarsest level of the hierarchy is the appearance of a new cluster (AR/SWM) which
combines two geographic locations, namely samples from stations 137 and 138 far off the South-West coast of
Mexico, and samples from stations 37, 38, and 39 in the Arabian Sea.

Figure 3.10 show 10 of the 55 clade slices that are the (parents) of the discovered ecological microbial
units using the phylogenetically informed method. We stopped at 10 slices because we can already guess
how quickly we can get lost in the tangle. In bigger datasets this kind of visualization quickly becomes
uninformative. Nonetheless we notice that most slices that cut far down in the hierarchy tend to spend
the rest of their time at finer levels. They do not consistently cut deeply. To understand what this mean,
Figure 3.11 shows the strength of the response at every node of the hierarchy. Notice how responses are
consistently asymmetric deeper in the hierarchy and show more variability towards finer levels. This indicates
that the stronger part of the signal picked up by ecological microbial units come from pattern of stark,
coherent presence/absence in a select set of samples, and that across the rest of the samples the signal
disintegrates into noise.

3.5 Discussion

In this chapter we took inspiration from computational linguistics and created models adapted to biological
data to try to visualize and disentangle the heterogeneity inherent to large dataset of microbiome samples
collected across multiple environments. The first step was to recognize the importance of the phylogenetic
tree as an organizing principle through which we can reformulate abundance data into a set of responses,
namely by decomposing abundance tables into phylogenetic abundance contrasts, the abundances split, from
deep in the tree of life towards ever finer taxonomic levels.

Using this decomposition we first devised a simple flat sample-wise clustering method which uses the set
of all abundance splits across a phylogenetic abundance table for a given sample as a unique, bulk fingerprint
that distinguishes sample from each others. The associated probabilistic generative model uses a CRP to
cluster these fingerprints into sets of samples with similar bulk responses. We were able to recover 5 clusters
in the TARA Oceans dataset, 3 of which recapitulated the known stratification along depth, and 2 of which
which seem to suggest the presence of hypothetically unique microbiomes; one in the coast of Chile near
the city of Santiago, and the other in the Scotia sea and the South Ocean. While this result is encouraging
in and of itself, the generative model does not allow us to look more precisely wherefrom those clusters
emerge. It also, by virtue of its flat construction, cannot give us access to more than the strongest niche
signal across samples. It is for example doubtful that there could be only 5 niches between which the global
ocean microbiome distributes itself. Indeed this flat construction completely ignores the potential for the
presence of sub-niches and the multi-dimensionality of niche space. Moreover the use of a bulk fingerprints
(one vector of abundance splits across all clades for a given sample) does not lend itself to an analysis of
which clades in particular are responsible for the emergence of those clusters. The complementary model is
one where each clade is given a unique fingerprint, namely a vector of abundance splits across all samples for
that clade. Clustering using this complementary approach cannot produce compatible clusters with those
obtained from the sample-wise clustering. The absence of mutually compatible clusters prevents the joint
analysis of samples and clade clusters when each of them were undertaken separately.

With this idea of the search for sub-niches in mind and of the need to produce a clustering whereby
clades and samples inform each others we introduced a non-parametric hierarchical clustering model called
the pl-nhDP. This model uses a double structures, the sample paths and the clade slices. Their points of
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Figure 3.9: MAP hierarchy inferred from the pl-nhDP for the TARA Oceans dataset. Shown in green the
SRF samples, in blue the DCM samples, in orange the MES samples, and in brown the MIX samples.
There are two other types of samples, namely those shown in pink, which represented MES samples at the
marine oxygen minimum zone, and in purple a DCM sample at the marine oxygen minimum zone. Six
clusters are shows, three of them named after their main depth constituents (SRF, DCM, MES), and three of
them after their location, CH for the coast of Chile, SO for the South Ocean, and AR/SWM for the Arabian
sea and two stations far off the South-West coast of Mexico.
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Figure 3.10: Clade slices associated with the (parents of) the first 10 microbial units discovered using the
phylogenetically informed method.
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Figure 3.11: Strength of the pool of responses accessible to samples and clades.
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intersection create compatible clusters; if many paths intersect many slices at one node of the hierarchy, then
all those clades within those samples respond similarly. Indeed clusters are now groupings of sample and
clades, and not simple grouping of samples or clades.

Applied to both the zebrafish gut dataset and the TARA Oceans we were able to recover coarse groupings
associated with known factors. In the zebrafish data those were given by the diet treatment (LDC, DDC,
and CZMD), and in the TARA Oceans dataset with depth stratification (SRF, DCM, MES) and geographic
location (CH, SO, AR/SWM). Those last three clusters indicates the putative present of novel microbiomes
driven most strongly by factors other than depth stratification. Whatever they may be they would have to
be more informative than mere geography.

More interesting perhaps in the complex structure of branching within those clusters both in the zebrafish
dataset and the TARA Oceans dataset. If we allow ourselves to speculate, the topology of this structure
suggests what we set out to discover: a vast hierarchy of sub-niches. What we mean by niche here is quite
minimal and must remain so if we are to define them in absence of any particular a priori knowledge about
the environmental features associated with a sample. We define a niche, or rather the ‘signal of a niche’,
as a pool of responses that are coherent for a certain number of samples across a certain number of clades.
What exact environmental features correlate with each of those signals we have yet to analyze. We were able
to associate a particularly strong signal in the environment to the coarser clusters (diet treatment in the
zebrafish dataset and depth and geographic location in the TARA Oceans dataset) but we discovered this
signal purely by inspecting the hierarchy after manually overlaying some of the known metadata associated
with samples.

We finally used this construction to define what we called ‘ecological microbial units’. These units we
defined as a collection of sister clades which covers the totality of the topology of the hierarchical tree,
or, in a way, that can ‘sense’ the various known and unknown factors that influence the way abundances
split themselves throughout the phylogenetic abundance table. Those units are interesting because they are
minimal and proceed from the coarsest towards the finest levels of the underlying phylogenetic tree, and are
thus biologically informed. They are useful because if one were to focus on only them and to ignore the rest
of the lineages present in a dataset, then the same topological complexity of the hierarchy would be recovered
and with it the same niche signals. Ecological microbial units therefore offer a compressed and coarse-grained
alternative to more arbitrarily defined OTUs and oligotypes and could help shed a simplifying light on the
make-up of microbiomes and how they respond to their environment.

Unfortunately those units are not defined in a unique way. Even using the phylogenetically informed
approach there is often a point where the next clade slice at the same depth in the phylogenetic tree does not
sense any new information, i.e. any new branch in the hierarchy; the slice is redundant. In our conservative
approach we skipped those slices even though there is no definite reason to do so. The less conservative
approach keeps all the redundant slices but the flip-side is that the set of microbial units becomes quite
large and therefore looses both its usefulness and minimalism. We haven’t yet found the right criteria to cut
through this conundrum.

3.6 Conclusion

The initial goal of this work was rather modest despite the level of technicality involved in conceptualizing and
creating the pl-nhDP model. We wanted to know if there was a strong enough signal in traditional microbial
ecology dataset to say something about the presence and heterogeneity of niches underlying an ensemble of
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microbiomes without any a priori knowledge or information pertaining to them and of the way microbial
diversity distributes itself across those hypothetical niches. Our results appear to answer this question in the
affirmative. We found that the signal was strong enough to recapitulate known results about major niches
in the global ocean microbiome, but also that there is enough signal to uncover a complex sub-structure of
sub-niches of unknown origin. We are therefore forced to ask what are they and along which dimensions of
environmental features do they organize?

By design the present method cannot answer this question. We say by design because at the core of the
method, where the generative model meets the data, the parameters of interest are the (binomial) responses.
The reason why a response sitting at a node of the hierarchical tree has its given value is simply that the
data supports it. We do not know what it is about the samples with paths that intersect that node that give
rise to this response. We only know that certain clades within those samples respond similarly. Tackling
this question would require the introduction of substantial additional complexity to the model. We would
need to proceed from the inference of responses to the inference of regression coefficients that give rise to
those responses. This means that we would need to known how many such regression coefficients are needed
and to which environmental factors those regression coefficients are associated. In the world of unsupervised
nonparametric model this kind of challenge can be approached using infinite latent feature models like the
Indian Buffet Process (IBP)[130]. The prospect of combining an IBP with the pl-nHDP is quite daunting to
say the least.

This lead to another question: how deep would our knowledge of the environment itself need to be in
order to capture most axes of niche organization? Given that our results suggest the alternative possibility
of a hierarchical decomposition of niche space rather than a geometric, hypervolume concept, wouldn’t
the task become monumental toward ever increasing fine-grain levels as we proceed from the mesoscopic
to the microscopic? Indeed we can, or rather we must imagine that niches do not simply align with
macroscopic environmental features like temperature, light availability, pH, salinity and so on, but also along
a more interacting concept in line with niches associated with the structure of food-webs, consumer-resource
relationships, and all the way down to mutualistic, synthorphic, and allelopathic interactions. We want to
believe that our method potentially detects signals from individual niches, but it is doubtful that we have yet
the capacity, neither technical nor experimental, to fully explore them. The need or temptation to use more
complex models, combining e.g. nonparametric clustering and infinite latent feature models like suggested
above is in our opinion premature beyond one of technical showmanship.
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Chapter 4

Conclusions

The goal of this thesis was to begin to bridge the gap between documenting microbial diversity and
understanding the processes that shape it. Keeping in mind the importance of always thinking in terms
of scales in ecology and evolution[28], [131], I developed a two pronged approach focusing in turn on the
macroscopic and the mesoscopic scale. Doing so we were able to highlight some patterns that appear at those
scales.

At the macroscopic level I developed a coarse-grained inference framework to infer the tempo and mode
of the global microbial tree of life and used a novel dynamical diversification model called the birth, death,
and heterogeneous innovation model which acknowledges and captures the empirical burstiness of microbial
phylogenies. The coarse-graining step overcomes the unavoidable problem of incompletely resolved phylogenies
common to microbial datasets. Using this approach, I identified two previously unknown universality pattern
inherent to microbial diversification. First, we found that the tempo of evolution is such that there is always
about one order of magnitude more fast bursty diversification events than slow diversification events. Second,
the bursty mode of diversification seems universal across a vast range of different microbiome in that it
manifests itself through the appearance of an exponent 1.5± 0.2 in the tail of the burst size distribution. This
universal pattern suggests that microbes consistently enter new environments in a dramatic and punctuated
fashion and therefore that the space of their niches is, at least phenomenologically speaking, rapidly expanded
and unbounded[103].

At the mesoscopic level, I developed a generative model together with an unsupervised machine learning
algorithm to automatically learn the complex hierarchical structure of factors (but not the factors themselves)
that drive the variation of patterns of richness, diversity, and abundances seen across multiple microbiome
samples. This model takes inspiration in the field of computational linguistic and topic modeling where
topics and their associated “bag-of-words” are automatically discovered within corpuses of documents using
hierarchical non-parametric Dirichlet process priors [115], [116]. I adapted these models for microbial data so
that they simultaneously learns, in analogy with topic modeling, hierarchical clusters of clades and samples
that respond in statistically coherent ways to the various unknown underlying environmental variables or
treatments, in other words so that they can capture the ‘signal of niches‘. It moreover gives a natural
way to define contextual microbial units as the minimal set of progressively lower phylogenetic clades that
are sufficient to reconstruct its topology, or in other words to ‘sense’ the full set of known and unknown
environmental factors. Applying the algorithm to microbiomes from the TARA Oceans expeditions I was able
to recover the well-known stratification of ocean microbiomes along depth together with three potential novel
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microbiomes present in the Scotia Sea and the South Ocean, near the coast of Chile, and in the Arabian
see and far off the South-West coast of Mexico in the North Pacific ocean. Although we did find and were
able visualize a wealth of potential niche signals the model nonetheless leave us in the dark as to what they
are and what characterizes them. Finally, while we were indeed able to create custom visualizations of the
complicated hierarchical structure, reminiscent of a tree covered with vines, we are yet to be able to easily
understand the full scope of the microbial organization it captures. This deserves further work before our
approach can serve as a tool for microbial ecologists.

Below the macroscopic and the mesoscopic lie the microscopic which we left addressed. To explore this
realm we must look closely at which processes can give rise to the abundance patterns we observe in microbial
datasets. Indeed we need to explain the distribution of responses across clades and samples rather than simply
discover and organize it. Towards this goal I have started to develop an inference framework which seeks to
recover the complex web of dynamical microbial interactions at play within ensemble of microbiomes once
again using the simplifying lens of the evolutionary relationships given by the phylogenetic tree. Doing so will
help to shed light on the many relationships of mutualism, syntrophy, and consumer-resource processes, their
effects on timescales of hours and days, and how they might betray the signal and character of micro-niches
which the previous two chapters hint at. Moreover we must consider that at this scale environmental
stochasticity plays an important role. Indeed when we go out and look at microbiomes in the wild using
environmental sampling we cannot take those microbiome samples as representation of fixed sets of abundances
at equilibrium, but as true snapshots of dynamical systems out-of-equilibrium; nature plucks the cords of
microbiomes and it is up to us to hear the music.

Perhaps we must first take a slight step back within the microscopic realm if we want to connect to the
macroscopic scale. timescales of days and months are hard to square with those over which diversification
events unfold. At the timescale of diversification one must consider that communities themselves evolve
but the above approach assumes that the community interaction matrix is fixed yet those interactions must
change in time. Instead of seeking fixed interactions to explain a phylogenetic abundance table, it makes
more sense to seek to capture how a community starting with a few species end up after many generation
with a many more species. This is necessary in order to go beyond the phenomenology of bursts. As it stands
our bursts decorating the timetree of microbes are but Yule processes, namely phenomenological processes or
pure and fast speciation happening on a very short timescale which leave as a signature a geometric burst
size distribution characterized by a single parameter g. Moreover we then compounded this burst process
with a beta distribution to accommodate for the possibility of heterogeneous g’s and in doing so make the
burst size distribution beta-geometrically distributed and characterized by two parameters, α and β. We do
not know why those parameters have the value they have and as we mentioned already how they tie to more
mechanistic models. This is where we want community-level modeling to make its mark. We need to allow
members of the community to evolve and speciate through innovation, horizontal gene transfer, allopatry,
etc., but we also want to stay away from trying to exactly capture these processes with intractably complex
models. We want instead to capture the essence of their effects.

To be specific, what is the simplest way to capture the effect of evolving community interactions and their
reorganization through time at at coarse-grained scale? No only that but what are the degrees of freedom
and constraints underlying this reorganization? One of the best prototypical minimal model we can think of
is the celebrated Bak-Sneppen model (BS)[132] in which species coevolve on a rugged fitness landscape and
in which mutation moving one species towards a different place in the fitness landscape can propagate to
its neighbor species with which it interacts in the community. It skips the explicitly consideration of the
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precise underlying community dynamics, genetic, geographic, etc., that lead to these differences in fitness and
to their correlated changes. It is, in other words, a coarse-grained model of evolution. This model displays
coevolutionary avalanches with a size distribution power-law distributed with exponent −1. It is these exact
kind of simplified models of ecologies with which we seek to replace our Yule/geometric model of bursts. The
exponent of avalanche sizes in the BS model has been shown to vary with the dimensionality of the lattice in
which the model unfolds (the original BS model happens on a 1-dimensional lattice). With constraints on the
geometry of interactions, for example coming from the average number of accessible mutated metabolisms as
dictated by a genetic, phenotypic, biochemical, and metabolic landscape, e.g. see [133]–[136], one can imagine
variation on the theme of of the BS model—variations of which we must say are already abundant—that
would seek to capture and explain as an emergent property the origin of the parameter we observe in the
BDH model.
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Symposium on Biocomputing. Pacific Symposium on Biocomputing, pp. 247–258, 2012, issn: 2335-6936.

[96] S. B. Hedges, J. Marin, M. Suleski, M. Paymer, and S. Kumar, “Tree of Life Reveals Clock-Like
Speciation and Diversification,” en, Molecular Biology and Evolution, vol. 32, no. 4, pp. 835–845,
Apr. 2015, issn: 0737-4038, 1537-1719. doi: 10.1093/molbev/msv037. [Online]. Available: http:

//mbe.oxfordjournals.org/content/32/4/835.

[97] J. Marin, F. U. Battistuzzi, A. C. Brown, and S. B. Hedges, “The Timetree of Prokaryotes: New
Insights into Their Evolution and Speciation,” en, Molecular Biology and Evolution, msw245, Dec.
2016, issn: 0737-4038, 1537-1719. doi: 10.1093/molbev/msw245. [Online]. Available: http://mbe.

oxfordjournals.org/content/early/2017/01/05/molbev.msw245.

[98] M. N. Price, P. S. Dehal, and A. P. Arkin, “Fasttree: Computing large minimum evolution trees with
profiles instead of a distance matrix,” Molecular biology and evolution, vol. 26, no. 7, pp. 1641–1650,
2009. [Online]. Available: http://mbe.oxfordjournals.org/content/26/7/1641.short.

[99] ——, “FastTree 2–approximately maximum-likelihood trees for large alignments,” PloS one, vol. 5,
no. 3, e9490, 2010. [Online]. Available: http://journals.plos.org/plosone/article?id=10.1371/

journal.pone.0009490.

[100] S. Louca and M. W. Pennell, “Why extinction estimates from extant phylogenies are so often zero,” en,
Current Biology, May 2021, issn: 0960-9822. doi: 10.1016/j.cub.2021.04.066. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0960982221006138.

80

https://doi.org/10.1016/0021-9991(76)90041-3
https://www.sciencedirect.com/science/article/pii/0021999176900413
https://www.sciencedirect.com/science/article/pii/0021999176900413
https://doi.org/10.1021/j100540a008
https://doi.org/10.1021/j100540a008
http://arxiv.org/abs/1110.3856
http://arxiv.org/abs/1110.3856
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1128/AEM.03006-05
https://journals.asm.org/doi/abs/10.1128/AEM.03006-05
https://doi.org/10.1038/ismej.2011.139
https://www.nature.com/articles/ismej2011139
https://www.nature.com/articles/ismej2011139
https://doi.org/10.1093/molbev/msv037
http://mbe.oxfordjournals.org/content/32/4/835
http://mbe.oxfordjournals.org/content/32/4/835
https://doi.org/10.1093/molbev/msw245
http://mbe.oxfordjournals.org/content/early/2017/01/05/molbev.msw245
http://mbe.oxfordjournals.org/content/early/2017/01/05/molbev.msw245
http://mbe.oxfordjournals.org/content/26/7/1641.short
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009490
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009490
https://doi.org/10.1016/j.cub.2021.04.066
https://www.sciencedirect.com/science/article/pii/S0960982221006138


[101] G. E. Hutchinson, “Concluding Remarks,” en, Cold Spring Harbor Symposia on Quantitative Biology,
vol. 22, pp. 415–427, Jan. 1957, issn: 0091-7451, 1943-4456. doi: 10.1101/SQB.1957.022.01.039.
[Online]. Available: http://symposium.cshlp.org/content/22/415.

[102] D. L. Rabosky, “Ecological limits and diversification rate: Alternative paradigms to explain the
variation in species richness among clades and regions,” en, Ecology Letters, vol. 12, no. 8, pp. 735–743,
2009, issn: 1461-0248. doi: 10.1111/j.1461- 0248.2009.01333.x. [Online]. Available: https:

//onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-0248.2009.01333.x.

[103] L. J. Harmon and S. Harrison, “Species Diversity Is Dynamic and Unbounded at Local and Continental
Scales,” The American Naturalist, vol. 185, no. 5, pp. 584–593, May 2015, issn: 0003-0147. doi:
10.1086/680859. [Online]. Available: https://www.journals.uchicago.edu/doi/full/10.1086/

680859.

[104] C. H. Martin and P. C. Wainwright, “Multiple Fitness Peaks on the Adaptive Landscape Drive Adaptive
Radiation in the Wild,” Science, vol. 339, no. 6116, pp. 208–211, Jan. 2013. doi: 10.1126/science.

1227710. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1227710.

[105] Z. D. Blount, C. Z. Borland, and R. E. Lenski, “Historical contingency and the evolution of a
key innovation in an experimental population of Escherichia coli,” en, Proceedings of the National
Academy of Sciences, vol. 105, no. 23, pp. 7899–7906, Jun. 2008, issn: 0027-8424, 1091-6490. doi:
10.1073/pnas.0803151105. [Online]. Available: https://www.pnas.org/content/105/23/7899.

[106] K. Sneppen, P. Bak, H. Flyvbjerg, and M. H. Jensen, “Evolution as a self-organized critical phe-
nomenon,” en, Proceedings of the National Academy of Sciences, vol. 92, no. 11, pp. 5209–5213,
May 1995, issn: 0027-8424, 1091-6490. doi: 10.1073/pnas.92.11.5209. [Online]. Available: https:

//www.pnas.org/content/92/11/5209.
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Appendix A

Calibration of the EMP Tree

In this appendix we explain how we transform the EMP phylogenetic tree into a timetree. The short version
goes as follows:

• Place the prokaryote sequences from the Timetree project on the greengenes 13.8 core reference tree
using SEPP,

• Optimize the greengenes+timetree tree with FastTree constrained by the family-level tree from the
Timetree project,

• Place the EMP OTU sequences on the constrained greengenes+timetree reference tree using SEPP,

• Use PATHd8 to ultrametrize the EMP+greengenes+timetree tree using the calibration point given by
the Timetree project.

For the first step, we begin by running RAxML 8.2.12 using the following command to obtain the info
RAxML info file which is needed for the pplacer step of SEPP:

raxmlHPC-PTHREADS -f e -m GTRCAT -H --no-bfgs \

-n gg_13_8_GTRCAT_for_SEPP

-s gg_13_8_99_otus.aligned.fasta \

-t gg_13_8_99_otus.tree \

-T 32 -p 424242

We then reformat it using the reformat-info.py helper from SEPP:

reformat-info.py RAxML_info.gg_13_8_GTRCAT_for_SEPP \

> RAxML_info.gg_13_8_GTRCAT_for_SEPP.reformatted

This file contains the MLE of the model parameters that best fit the greengenes reference tree, namely
estimates of its branch lengths, GTR matrix, and CAT weights. Moving on, there are 11861 unique Timetree
prokaryote sequences. The Timetree family-level calibrated tree contains 102 families (see Figure B.1 and
Table B.1). We were unable to map all the prokaryote sequences onto one of those families using their
taxonomy. Indeed only 90 of those families were represented in the set of sequences, which trimmed down
the number of usable Timetree sequences to 6294 sequences. The families that were dropped are shown in
Figure B.1. We do not know why we have this discrepancy. Now we place those 6294 sequences on the
greengenes reference tree with SEPP 4.5.1 using the following command:
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run_sepp.py --fragment bact_arch_tt_2009_remaining6K.unaligned.fasta

--alignment gg_12_10_treecompatible_aligned.fasta \

--tree RAxML_result.gg_12_10_GTRCAT_for_SEPP \

--raxml RAxML_info.gg_12_10_GTRCAT_for_SEPP.reformatted \

--output tt_on_gg_sepp --outdir sepp_tt_on_gg --tempdir sepp_tmp \

-x 32 -seed 424242

The greengenes 13.8 reference tree is already rooted and therefore we can skip the rooting step. The filename
for the placement tree is tt_on_gg_sepp_placement.tog.tre.

For the third step we begin by generating a FastTree constraint file file using the Timetree family-level
tree decorated with the 6294 prokaryote sequences using the following command:

fasttree_constraints_alignment.py bact_arch_tt_2009_remaining6K.nwk \

> timetree_6K_fasttree_constraints

This generates a constraint alignment of the following form:

Acetobacteraceti_Acetobacteraceae_[...] 01011101110111101111110111111 [...]

Acidianusbrierleyi_Sulfolobaceae_[...] 10111011111111111111111111111 [...]

Methanococcusaeolicus_Methanococcaceae_[...] 10110111011110111110110111111 [...]

This alignment has 6294 rows, and the block of 0’s and 1’s has 178 columns representing 178 constraints.
Indeed, an unrooted tree of size N has 2(N − 1) edges, and therefore the family-level constraint tree gives
2(90− 1) = 178 constraints, each representing a split induced by cutting an edge of the tree. Sequences that
fall on one side of a split are given a 0 and those that fall on the other side of the split are given a 1. Then
we run FastTree 2.1.11 in double precision using the following command:

FastTreeMP_DOUBLE -constraints timetree_6K_fasttree_constraints \

-nt -gtr -fastest \

-intree tt_on_gg_sepp_placement.tog.tre \

< sepp_tt_on_gg/tt_on_gg_sepp_alignment_masked.fasta \

> tt_on_gg.1.nwk

We iterate a few times by feeding the tree from step n as intree for the step n+1, i.e

FastTreeMP_DOUBLE -constraints timetree_6K_fasttree_constraints \

-nt -gtr -fastest \

-intree tt_on_gg.[n-1].nwk \

< sepp_tt_on_gg/tt_on_gg_sepp_alignment_masked.fasta \

> tt_on_gg.[n].nwk

After around 5 iterations, tt_on_gg.5.nwk contains a tree which breaks 62 out of the 178 constraints.
Iterating once more gives a tree which breaks more constraints and therefore we stop. Then we run a heuristic
to try and find the most likely sequences causing those constraints to be broken:

constraint_tree = ete3.Tree(’bact_arch_tt_2009_remaining6K.nwk’, format=1)

test_tree = ete3.Tree(’tt_on_gg.5.nwk’, format=1)

problematic_sequences = get_problematic_leaf_names(test_tree, constraint_tree)
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The heuristic identifies 20 problematic sequences. Removing those sequences from both constraint_tree

and test_tree resolves all broken constraints. We verify this using our own algorithm. Then we save
a new reference tree tt_on_gg.noprob.nwk, alignment tt_on_gg_alignment_masked.noprob.fasta, and
constraint tree bact_arch_tt_2009_remaining6K.noprob.nwk from which we eliminated the problematic
sequences. Using FastTree we confirm once more that all constraints are satisfied. We mention here that
following the removal of the problematic sequences we did not lose any of the 90 calibration points. Every
family retained at least one representative sequence.

For the fourth step, we first recalculate a RAxML info file containing the MLE of model parameters
because we changed the greengenes reference tree by placing Timetree sequences on it and by performing 5
iterations of constrained FastTree optimization. The command is as follows:

raxmlHPC-PTHREADS -f e -m GTRCAT -H --no-bfgs \

-n tt_on_gg_noprob_GTRCAT_for_SEPP

-s tt_on_gg_alignment_masked.noprob.fasta \

-t tt_on_gg.5.noprob.nwk \

-T 32 -p 434343

Then we reformat the info file using

reformat-info.py RAxML_info.tt_on_gg_noprob_GTRCAT_for_SEPP \

> RAxML_info.tt_on_gg_noprob_GTRCAT_for_SEPP.reformatted

For the fifth step we simply use SEPP again to place all 8,023,841 EMP sequences on our new reference
tree using

run_sepp.py --fragment EMP_rep_set_fna

--alignment tt_on_gg_sepp_alignment_masked.noprob.fasta \

--tree RAxML_result.gg_13_8_GTRCAT_for_SEPP \

--raxml RAxML_info.tt_on_gg_noprob_GTRCAT_for_SEPP.reformatted \

--output emp_on_ttgg --outdir emp_on_ttgg --tempdir sepp_tmp \

-x 32 -seed 434343

Finally, we generate a PATHd8 input file using

generate_pathd8_infile(calibration_tree=’bact_arch_tt_2009_remaining6K.noprob.nwk’,

node_age_dict_or_json=’timetree_2009_node_ages.json’,

tree_to_calibrate=’emp_on_ttgg_placement.tog.tre’,

outfile=’emp_on_ttgg_pathd8_infile’)

The file has the following format:

Sequence length = 3612;

(((((((200279:0.143462379,((33564:0.051103783,18294:0.107360841):0.09674 [...]

mrca: Thermoplasmaacidophilum_[...], Picrophilusoshimae_[...], fixage=992;

mrca: Anaplasmaphagocytophilum_[...], Aestuariispirainsulae_[...], fixage=2042;

mrca: Alysiellacrassa_[...], Cycloclasticuspugetii_[...], fixage=1993;

87



[...]

name of mrca: Thermoplasmaacidophilum_[...], Picrophilusoshimae_[...], name=12b;

name of mrca: Anaplasmaphagocytophilum_[...], Aestuariispirainsulae_[...], name=25;

name of mrca: Alysiellacrassa_[...], Cycloclasticuspugetii_[...], name=26;

[...]

The newick string is nothing but the content of emp_on_ttgg_placement.tog.tre obtained in the previous
step, and then there is a list of pairs of sequence names that have as their MRCA a calibration point given by
the calibrated Timetree. We only need one pair for each calibration point. We can now finally ultrametricize
the EMP tree using

PATHd8 emp_on_ttgg_pathd8_infile emp_on_ttgg_pathd8_outfile

and from within emp_on_ttgg_pathd8_outfile we extract the EMP timetree.
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Appendix B

Calibrated Family-Level Prokaryote
TimeTree of Life

In Figure B.1 we reproduce the calibrated prokaryote TimeTree of Life from the Timetree project. The age
of the nodes can be found in Table B.1.

Node # Age Node # Age Node # Age Node # Age Node # Age Node # Age
LUCA 0 4200

Archaea 1b 4193 3b 3594 5b 3313 7b 3093 9b 2430 11b 1676
2b 4187 4b 3468 6b 3160 8b 2799 10b 2216 12b 992

Bacteria 1 4189 16 2579 31 1834 46 1482 61 1121 76 751
2 4179 17 2504 32 1806 47 1481 62 1104 77 751
3 3306 18 2421 33 1775 48 1436 63 1069 78 744
4 3134 19 2339 34 1753 49 1432 64 1055 79 668
5 2979 20 2281 35 1753 50 1429 65 1042 80 662
6 2908 21 2233 36 1747 51 1420 66 1037 81 634
7 2897 22 2173 37 1673 52 1413 67 1030 82 621
8 2874 23 2099 38 1653 53 1402 68 1028 83 616
9 2849 24 2047 39 1621 54 1392 69 1027 84 594

10 2762 25 2042 40 1620 55 1386 70 950 85 523
11 2761 26 1993 41 1613 56 1326 71 937 86 509
12 2739 27 1919 42 1612 57 1306 72 872 87 432
13 2739 28 1899 43 1579 58 1224 73 871 88 380
14 2687 29 1860 44 1554 59 1189 74 812
15 2607 30 1837 45 1498 60 1180 75 793

Table B.1: Calibration point from the TimeTree of Life. Node numbers corresponds to those shown in
Figure B.1
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Figure B.1: Calibrated prokaryote TimeTree of Life. Node numbers correspond to calibrated nodes with ages
found in Table B.1. In orange we highlight the families that are not represented in the set of sequences we
obtained from the Timetree Project.
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Appendix C

ML Fits for the BDH Model Across
Environmental Ontologies

Figure C.1: Aquatic, freshwater biome (ENVO2)

Figure C.2: Aquatic, freshwater lake biome (ENVO3)
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Figure C.3: Aquatic, large freshwater lake biome (ENVO4)

Figure C.4: Aquatic, small freshwater lake biome (ENVO4)

Figure C.5: Aquatic freshwater river biome (ENVO3)
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Figure C.6: Aquatic large freshwater river biome (ENVO4)

Figure C.7: Aquatic small freshwater river biome (ENVO4)

Figure C.8: Aquatic, unspecified freshwater biome (ENVO3)
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Figure C.9: Aquatic, marine biome (ENVO2)

Figure C.10: Aquatic, estuarine marine biome (ENVO3)

Figure C.11: Aquatic, marine marginal sea biome (ENVO3)
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Figure C.12: Aquatic, marine benthic biome (ENVO3)

Figure C.13: Aquatic, marine benthic coral reef biome (ENVO4)

Figure C.14: Aquatic, unspecified marine benthic biome (ENVO4)
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Figure C.15: Aquatic, marine pelagic biome (ENVO3)

Figure C.16: Aquatic, unspecified marine biome (ENVO3)

Figure C.17: Aquatic, unspecified (ENVO2)
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Figure C.18: Terrestrial, anthopogenic biome (ENVO2)

Figure C.19: Terrestrial, anthropogenic cropland biome (ENVO3)

Figure C.20: Terrestrial, dense anthropogenic settlement biome (ENVO3)
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Figure C.21: Terrestrial, unspecified dense anthropogenic biome (ENVO4)

Figure C.22: Terrestrial, dense anthropogenic urban biome (ENVO4)
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Figure C.23: Terrestrial, unspecified anthropogenic biome (ENVO3)

Figure C.24: Terrestrial, anthropogenic rangeland biome (ENVO3)
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Figure C.25: Terrestrial, anthropogenic village biome (ENVO(3)

Figure C.26: Terrestrial, desert biome (ENVO2)
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Figure C.27: Terrestrial, unspecified desert biome (ENVO3)

Figure C.28: Terrestrial, polar desert biome (ENVO3)

Figure C.29: Terrestrial, forest biome (ENVO2)
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Figure C.30: Terrestrial, broadleaf forest biome (ENVO3)

Figure C.31: Terrestrial, tropical broadleaf forest biome (ENVO3)
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Figure C.32: Terrestrial, unspecified tropical broadleaf forest biome (ENVO4)

Figure C.33: Terrestrial, moist tropical broadleaf forest biome (ENVO4)
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Figure C.34: Terrestrial biome, coniferous forest biome (ENVO3)

Figure C.35: Terrestrial, unspecified coniferous forest biome (ENVO4)

Figure C.36: Terrestrial, temperate coniferous forest biome (ENVO4)
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Figure C.37: Terrestrial, tropical coniferous forest biome (ENVO4)

Figure C.38: Terrestrial, mixed forest biome (ENVO3)

Figure C.39: Terrestrial, unspecified mixed forest biome (ENVO4)
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Figure C.40: Terrestrial, mixed temperate forest biome (ENVO4)

Figure C.41: Terrestrial, unspecified forest biome (ENVO3)

Figure C.42: Terrestrial, grassland biome (ENVO2)
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Figure C.43: Terrestrial, montane grassland biome (ENVO3)

Figure C.44: Terrestrial, unspecified montane grassland biome (ENVO4)

Figure C.45: Terrestrial, temperate grassland biome (ENVO3)

107



Figure C.46: Terrestrial, tropical grassland biome (ENVO3)

Figure C.47: Terrestrial, mangrove biome (ENVO2)
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Figure C.48: Terrestrial, unspecified (ENVO2)

Figure C.49: Terrestrial, shrubland biome (ENVO2)

109



Figure C.50: Terrestrial, montane shrubland biome (ENVO3)

Figure C.51: Terrestrial, unspecified shrubland biome (ENVO3)

Figure C.52: Terrestrial, Mediterranen subtropical shrubland biome (ENVO4)
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Figure C.53: Terrestrial, tropical shrubland biome (ENVO3)

Figure C.54: Terrestrial, tundra biome (ENVO2)

Figure C.55: Terrestrial, woodland biome (ENVO2)
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Figure C.56: Terrestrial, Mediterranean subtropical woodland biome (ENVO4)
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